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Abstract

Distributional models of semantics learn word meanings from contextual co-occurrence patterns

across a large sample of natural language. Early models, such as LSA and HAL (Landauer &

Dumais, 1997; Lund & Burgess, 1996), counted co-occurrence events; later models, such as BEA-

GLE (Jones & Mewhort, 2007), replaced counting co-occurrences with vector accumulation. All of

these models learned from positive information only: Words that occur together within a context

become related to each other. A recent class of distributional models, referred to as neural embedding

models, are based on a prediction process embedded in the functioning of a neural network: Such

models predict words that should surround a target word in a given context (e.g., word2vec; Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013). An error signal derived from the prediction is used to

update each word’s representation via backpropagation. However, another key difference in predic-

tive models is their use of negative information in addition to positive information to develop a

semantic representation. The models use negative examples to predict words that should not surround
a word in a given context. As before, an error signal derived from the prediction prompts an update

of the word’s representation, a procedure referred to as negative sampling. Standard uses of word2-
vec recommend a greater or equal ratio of negative to positive sampling. The use of negative infor-

mation in developing a representation of semantic information is often thought to be intimately

associated with word2vec’s prediction process. We assess the role of negative information in develop-

ing a semantic representation and show that its power does not reflect the use of a prediction mecha-

nism. Finally, we show how negative information can be efficiently integrated into classic count-based

semantic models using parameter-free analytical transformations.
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1. Introduction

Landauer and Dumais’s classic Latent Semantic Analysis (LSA; 1997) model chal-

lenged the field of lexical semantics to re-think what knowledge can be extracted from

linguistic experience and what has to be built into a cognitive system—“Plato’s problem”

in their provocative title. The introduction of LSA led to a new a class of models of

semantic memory being developed, entitled distributional models, which have focused on

how much knowledge can be extracted from large text corpora.

Distributional models of semantics learn the meanings of words based on patterns of

word co-occurrence within a large sample of language. The underlying idea is that words

that occur in similar contexts have similar meanings, an idea based in both the philosophy

of language and in linguistics (Harris, 1954; Wittgenstein, 1953). Current distributional

models use different mechanisms to acquire semantic knowledge, including count-based

methods (e.g., Bullinaria & Levy, 2007, 2012; Lund & Burgess, 1996; Recchia & Jones,

2009), matrix decomposition techniques (e.g., Landauer & Dumais, 1997), probabilistic

inference (Griffiths, Steyvers, & Tenenbaum, 2007), vector-accumulation/noise-cancella-

tion methods (e.g., Jones & Mewhort, 2007; Recchia, Sahlgren, Kanerva, & Jones, 2015),

and retrieval-based mechanisms (Jamieson, Johns, Avery, & Jones, 2018; Johns & Jones,

2015; Kwantes, 2005). All models make different assumptions about how co-occurrence

information is used, but all use co-occurrence as the fundamental building block when

learning semantic representations. The idea is that word co-occurrence in the natural lan-

guage environment provides sufficient information to support the development of a repre-

sentation for the meaning of words.

A new class of distributional models—referred to as neural embedding models—are

based upon established connectionist principles and use standard backpropagation methods

(Rumelhart, Hinton, & Williams, 1986) but add active sampling to train the network to pre-

dict the words that should occur with a target word in its context1 (e.g., word2vec; Mikolov,

Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013). The

occurrence of a target word within a window—its size is defined by a free parameter—
prompts the model to predict accompanying context words that should occur within that

window. Incorrect predictions provide an error signal used to bring the hidden weights of

the network closer to the base rate of environmental co-occurrence of the training corpus.

Unlike LSA and other distributional models, word2vec uses negative information to

refine the word’s semantic representation, a technique called negative sampling. Negative

sampling operates by randomly sampling a number of unrelated words based on word fre-

quency and training the network to suppress those words in the predicted output layer.

The idea is that the network should be able to predict the words with which a target word

should occur and to inhibit unrelated words.

Mandera, Keuleers, and Brysbaert (2017) have argued that word2vec is a realistic cog-

nitive model, and more plausible than earlier models. They show, using multiple corpora

across word2vec’s parameter space, that word2vec outperforms count-based models (cf.

Baroni, Dinu, & Kruszewski, 2014). They also proposed that word2vec is more

2 of 30 B. T. Johns, D. J. K. Mewhort, M. N. Jones / Cognitive Science 43 (2019)



cognitively plausible, as it solves both a computational-level and algorithmic-level prob-

lem within Marr’s (1982) hierarchy. The latter point follows from word2vec’s use of a

neural network as its underlying representation.

However, negative sampling seems quite implausible from a cognitive perspective, as

it requires a person to generate a number of unrelated words each time a word is encoun-

tered in the linguistic environment. Additionally, although Mandera et al. (2017) found a

sizeable advantage for word2vec over count-based models, other studies have found smal-

ler differences (e.g., Asr, Willits, & Jones, 2016; De Deyne, Perfors, & Navarro, 2016;

Levy, Goldberg, & Dagan, 2015; Recchia & Nulty, 2017), while Demski, Ustun, Rosen-

bloom, and Kommers (2014) report that a modified BEAGLE model (Jones & Mewhort,

2007) algorithm outperforms word2vec on analogy tasks.

This is not to say that negative information is not used in language learning and orga-

nization. Using a framework co-opted from animal learning models, Ramscar, Hendrix,

Shaoul, Milin, and Baayen (2014) and Ramscar, Sun, Hendrix, and Baayen (2017) have

recently demonstrated that as positive associations are formed between words, there are

corresponding negative associations being formed among words with which the target

word does not co-occur. Ramscar et al. (2017) demonstrated empirically that the buildup

of the negative associations has important consequences for performance on a paired-

associate learning task. Thus, even though negative sampling may seem questionable

from a mechanistic point of view, the integration of negative information into a model of

distributional semantics has empirical support.

There are two conflated differences between word2vec and classic models of semantics.

The first is word2vec’s architecture, a predictive neural network with error correction. The

second is the use of negative information in developing semantic representations. Because

classic count-based models have not explicitly integrated negative information into their

representations, it is difficult to determine how much of word2vec’s success is attributable
to its predictive connectionist architecture and how much is attributable to the use of nega-

tive information.

Negative information is a natural way to hone a prediction mechanism: A negative

error signal could potentially be as informative as a positive one.

The goal of the current work is to clarify the contribution of negative information in

distributional semantics and to show how negative information can be integrated into

classic model representations. To do so, we will start with a very simple count-based dis-

tributional model and add negative information to its representation. The goal is to assess

how much power comes from negative information and, indirectly, to assess the power

contributed by the connectionist architecture. To anticipate the results, we will show that

negative information can be a powerful factor in distributional modeling. Additionally,

we will describe analytical solutions designed to integrate negative information into a

word’s semantic representation.

There are multiple ways to interpret negative information in distributional semantics.

For example, Landauer, Foltz, and Laham (1998) noted that LSA implicitly uses the lack

of connection between two words to infer that those words are unrelated: “. . . the aggre-

gate of all the word contexts in which a given word does and does not appear provides a
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set of mutual constraints that largely determines the similarity of meaning of words . . .”
(p. 259). The goal of the first part of this article is to understand the impact of explicit

negative sampling, which we define as the generation of unrelated words that are used to

update a target word’s representation.

Given the success of word2vec, it is important to understand how negative information

works. Curiously, it has mostly defied traditional mathematical analysis. For example,

Goldberg and Levy (2014) conducted a formal analysis of the role of negative sampling

and concluded by asking “Why does this produce good word representations?” Their

answer was unusually candid: “Good question. We don’t really know” (p. 5). Although

subsequent work has elucidated the role of negative information somewhat (see Levy

et al., 2015), the role of negative information in distributional semantics is still an open

question. The first section of this article will answer this challenge.

The second part of the article will focus on using the information gleaned from the

first analysis to allow standard models of distributional semantics to integrate negative

information without the need for an explicit sampling mechanism, simplifying the

approach.

The overall goal of this article is to provide an understanding of how both positive and

negative information combine to account for semantic behavior. The hope is that by gain-

ing an explicit understanding of how different information sources interact in forming

semantic representations, better models can be developed, both in terms of the model’s

power and in terms of conceptual clarity, providing new pathways for theoretical and

empirical work in lexical semantics to understand how humans learn and represent distri-

butional semantics.

2. Modeling framework

To assess the power of integrating negative information into a distributional model, we

need a simple model in which we can manipulate the use of this information source.

Accordingly, we used a very simple model, namely a word-by-word frequency matrix (re-

ferred to as the WW model in the below simulations). In the model, each row is a word’s

semantic representation, which encodes the frequency distribution of co-occurrences with

other words in context. Counting is restricted to a moving window of n-words (n being a

free parameter) within a sentence in a corpus. In a word-by-word representation, the

semantic similarity of two words is their overlapping co-occurrence patterns with other

words. Hence, similarity between two words can be assessed using a vector cosine (nor-

malized dot product) between their respective rows. The word-by-word frequency model

shares assumptions with the classic HAL model (Lund & Burgess, 1996; see also Hills,

Maouene, Riordan, & Smith, 2010). The COALS model of Rohde, Gonnerman, and Plaut

(2006; see also, Chang, Furber, & Welbourne, 2012) offers a similar view of lexical

semantics.

The standard count-based approach contains pointwise mutual information (PMI;

Church & Hanks, 1990). PMI is a direct measure of the probability of two words
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occurring in the same context, and it has been shown to provide an excellent account of

lexical behaviors, especially word similarity measures (Bullinaria & Levy, 2007, 2012;

Levy & Goldberg, 2014a,b; Levy et al., 2015; Recchia & Jones, 2009; Recchia & Nulty,

2017). Hence, we elected a word-by-word representation because it is concise and will

allow any role of negative information to be well understood.

Levy and Goldberg (2014b) describe how to integrate negative information into PMI

by taking out a constant amount from the resulting metric (see equations 5 and 6 below).

Their transformation increases performance but does not explain how negative informa-

tion helps to construct accurate semantic representations of words. Because it is based

upon probabilities of occurrence, negative sampling cannot be built into a PMI measure

directly; obviously, probability of occurrence must be nonnegative. In the following sec-

tions, we will contrast our proposals with that of PMI.

Within the word-by-word frequency matrix framework, positive information will be

learned by increasing the strength of two words that occur with each other in the same

context (defined as a window size within a sentence) by adding 1 to both words entry in

the matrix upon each co-occurrence. Negative information will also be considered. For

each context studied, a set number (represented with the parameter k) of words will be

generated randomly for each word in that context; the randomly generated words are, in

effect, negative samples. The negative samples will be unique for each target word. The

strength between a studied word and a negative sample will be decreased by 1. Thus, for

every sentence in a corpus, each studied word will have positive and negative information

integrated into its resulting representation.

A unique aspect of word2vec is its use of subsampling, a process designed to limit the

impact of very high–frequency words, similar to the use of stop lists in other distribu-

tional approaches (e.g., Landauer & Dumais, 1997). Subsampling works by probabilisti-

cally skipping words relative to their frequency: High–frequency words are assigned a

greater probability of being skipped. The expression used to determine the probabilities

differs between publications and the publicly available code. We took the function from

the C code of word2vec to define the probability of a word being included (Mikolov,

Chen, et al., 2013; Mikolov, Sutskever, et al., 2013):

P wið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z wið Þ=t

p
þ 1

� �
� t

z wið Þ
� �

; ð1Þ

where z(wi) is the probability of a word occurring across the whole corpus (frequency of

a word divided by the total number of word occurrences) and t is a free parameter.2 The

use of subsampling is an elegant way of removing the use of stop lists that were used in

previous models (e.g., Landauer & Dumais, 1997).

Fig. 1 contains sampling probability of the most frequent 6,000 words (after approxi-

mately this point no words are subsampled) in the corpus described below, organized by

rank word frequency. This figure shows that the subsampling routine used here has a

roughly linear increase in a word’s probability of being sampled as a function of word
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frequency, with the most frequent words being the least likely to be sampled. The use of

a subsampling routine allows the impact of very high–frequency words to be mitigated,

while allowing lower frequency words to affect a word’s representation. By manipulating

the parameter t, the subsampling distribution is changed. The correct setting for this

parameter is likely corpus dependent, as there are significant deviations in frequency dis-

tributions by type of corpus used (see Johns & Jamieson, 2018 and Johns, Jones, &

Mewhort, 2019, for examples).

In word2vec, negative samples are selected based on the frequency distribution of the

corpus (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013). Typically, the dis-

tributions are smoothed in some way to reduce the influence of high–frequency words

(Levy et al., 2015). Here, negative samples will be selected based on a word’s frequency,

equivalent to past work. The probability distribution will be smoothed by multiplying a

word’s frequency value by its subsampling probability before calculating a word’s proba-

bility of being sampled, reducing the overall impact of high–frequency words. Consistent

with past results (e.g., Levy et al., 2015), the smoothing process produces increased per-

formance.

We used a corpus of 20 million sentences, derived by combining Wikipedia articles

and non-fiction books (Johns, Jones, & Mewhort, 2016; Johns et al., in press). The corpus

consists of approximately 120 million words. The word list for the model will be the

50,000 highest frequency words from the corpus. Increasing the size of the word list had

a negligible effect on performance.

Fig. 1. Sampling probability as a function of rank word frequency. Frequency was assessed with a 20 million

sentence corpus consisting of Wikipedia articles and non-fiction books. This figure shows that the subsam-

pling procedure used here results in a roughly linear increase in the probability of a word being sampled. Of

note, this sampling procedure only impacts approximately the most frequent 6,000 words.
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We used six word relatedness and similarity measures to assess the model’s perfor-

mance. Using labels taken from De Deyne et al. (2016), the measures included (a) the

WordSim data (n = 353; Finkelstein et al., 2002), (b) RG1965 data (n = 65; Rubenstein

& Goodenough, 1965), (c) the MTURK-771 data (n = 771; Halawi, Dror, Gabrilovich, &

Koren, 2012), (d) the MEN data (n = 3,000; Bruni, Boleda, Baroni, & Tran, 2012), (e)

the SimLex-999 data (n = 999; Hill, Reichart, & Korhonen, 2016), and (f) the Radinsky-

2011 dataset (n = 287; Radinsky, Agichtein, Gabrilovich, & Markovitch, 2011).

Our goal is to evaluate the power of integrating negative information into a count-

based co-occurrence representation. Because word2vec is based on prediction (Mandera

et al., 2017)—the model predicts words that it should and should not occur with a target

word—it is unclear whether negative sampling should work in a model based on a word-

by-word frequency representation. Active prediction is not used in such a model. If the

model does see an increase in performance, it would signal that the role of negative infor-

mation in distributional semantics does not reflect a prediction mechanism, or underlying

learning framework, but instead results from some other aspect of the statistical structure

of the language environment.

3. Results

The word-by-word frequency matrix model has two free parameters: window size and

the number of negative samples. The first simulation reports the fit across the parameter

space for both parameters using the complete WordSim data set (Finkelstein et al., 2002).

Fig. 2 shows variance accounted for as a function of the number of negative samples

and the window size. When negative sampling was used (i.e., when the negative-sampling

parameter is > 0), there was a rapid increase in variance accounted for. The best perfor-

mance at each number of negative samples was not overly impacted by window size, and

for each window size, the optimal number of negative samples was one less than the win-

dow size. Because some sentences are shorter than the window size, this pattern means

that optimal performance is given with a roughly equal sampling of positive and negative

information. When the amount of negative information exceeded the positive information,

there was a rapid reduction in performance. The best combination had a window size of

4, with 3 negative samples per word, r = 0.7, p < .001, an impressive correlation for the

data, given the simplicity of the underlying representation.

To confirm that an advantage with negative sampling extends to other datasets, Fig. 3

shows performance for seven datasets noted earlier.3 In each case, we used an optimal

window size and number of negative samples. As is shown in Fig. 3, the addition of neg-

ative sampling into a very simple co-occurrence framework produced a substantial

increase in the variance explained by the model. The increase in fit as a function of nega-

tive samples is coherent with a variety of studies of word2vec’s performance (e.g. Levy

& Goldberg, 2014a,b; Levy et al., 2015); they have shown that increasing (and optimiz-

ing) the network’s number of negative samples significantly increases the model’s perfor-

mance.
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Why does negative sampling add so much power? The standard explanation is that

negative information helps word2vec to hone its prediction mechanism via error correc-

tion. However, that explanation could not hold for the representation used here.

To consider why negative information has such a powerful impact, we constructed two

sampling procedures to assess the standard frequency-based sampling. The first used a

frequency distribution from a different corpus. Using a distribution from a different cor-

pus checks whether the success of negative sampling depends on the actual construction

of the training corpus. Two corpora were used: (a) a related corpus consisting of 20 mil-

lion sentences from different non-fiction books and Wikipedia articles; (b) a corpus con-

sisting of 20 million sentences from books of fiction, an unrelated corpus (corpus

described in Johns et al., 2019). The second sampling procedure used uniform sampling,

in which each word in the vocabulary has an equal probability of being selected. Both

manipulations were implemented using a window size of 4, with the number of negative

samples being manipulated.

Fig. 4 shows the variance accounted for as a function of the number of negative sam-

ples and the sampling algorithm. Note that uniform sampling produced very little change

in the model’s fit (a point also noted by Mikolov, Sutskever, et al., 2013). The null effect

suggests that negative sampling requires information about the distributional structure of

the language from which the model is learning in order to aid in semantic learning. A

direct test of this idea is to use a frequency distribution from an unrelated corpus. When

Fig. 2. Variance accounted for by the WW model with negative sampling for the Finkelstein et al. (2002)

data. This figure shows a massive increase in the capabilities of the model when negative sampling is intro-

duced. However, there is massive drop in model performance when the number of negative samples exceeds

the window size (amount of positive information).
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using an unrelated corpus of fiction books to drive sampling, there was a very small

improvement in performance. The result suggests that, unless the frequency distribution

maps onto the training corpus, negative sampling offers very little improvement. The

results using a related corpus tap into the question explicitly. As Fig. 4 illustrates, there

was an improvement when using a corpus that had a similar construction to the training

corpus but that had different underlying materials. That said, the improvement was small

compared to using the actual training corpus to drive the sampling procedure.

The results shown in Fig. 4 strongly suggest that the negative sampling success

depends on the underlying distributional structure of language; it does not rely upon a

prediction mechanism.

3.1. Discussion

The data in Figs. 2 and 3 demonstrate that building negative sampling into a very sim-

ple word-by-word frequency model produces a substantial increase in performance. The

results in Fig. 4 demonstrate that negative sampling depends on the distributional struc-

ture of the corpus, not on prediction mechanisms.

The corpus is key. When negative sampling maps onto training materials, there is a

balance between positive and negative information: the positive information increases the

relationship between correct associates, and the negative information decreases the con-

nection to unrelated words. Both happen systematically for each word. When the sam-

pling procedure is altered, the balance between positive and negative information falls

Fig. 3. Variance accounted for across seven word similarity/relatedness datasets for the word-by-word fre-

quency-matrix model as a function of information used (only positive only or positive and negative information).
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apart: Negative information no longer compliments the positive information. As a result,

the negative information no longer indicates the structure of the language that is being

encoded. When negative information no longer refers to the structure of the language—
either because sampling is guided by a uniform distribution or is taken from the wrong

corpus—there is very little improvement in performance.

Negative sampling works because it allows the base rate of occurrence to be included

in the association between two words. If the amount of positive information between two

words vastly exceeds the base rate of occurrence of those words, it signifies that those

two words have a strong association. If the positive information does not exceed the base

rate, the two words are not associated.

Base-rate information depends on corpus size. Because a large number of samples are

needed to establish a base rate, if integration of base rate occurrence drives the success

of negative sampling, corpus size should be critical. To test the prediction, we trained a

word-by-word frequency matrix model on 2,000,000 sentences, in steps of 200,000, using

positive information only and using both positive and negative information. The fit was

calculated to the combined data of Finkelstein et al. (2002).

Fig. 5 shows the variance accounted for as a function of corpus size and the kind of infor-

mation used in learning (positive only vs. positive and negative information). Negative sam-

pling increased performance as a function of corpus size, signaling that, as a base rate of

occurrence is formed, negative sampling has an increasingly large effect on the semantic

representation. The advantage corresponds to the general findings that word2vec models are

Fig. 4. Variance accounted for as a function of the number of negative samples and the sampling regime.

Uniform sampling had very little impact on performance. Sampling using the frequency distribution of an

unrelated corpus only caused marginal improvements in fit. There was a moderate increase when words are

sampled from a related corpus, but the increase was slight compared to sampling from the training corpus.
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more successful with larger corpora (e.g., Levy et al., 2015). Increasing corpus size not only

provides more positive samples from which to learn but also allows negative sampling to

help form a more accurate base rate of occurrence across all words.

Of course, the base rates are contained within the word-by-word matrix. Hence, a sam-

pling procedure may not even be necessary. If so, a free parameter can be removed.

4. Analytical solutions to negative sampling

The argument of the previous section is that negative sampling helps establish the base

rate against which positive occurrence is assessed. Given that base rate information of

word occurrence is contained in a word-by-word matrix, it should be possible to exploit

base-rate information without relying on a sampling procedure.

An analytical solution would have multiple advantages. First, and most important, it

would simplify the model by removing a free parameter, making it a more parsimonious

account. Secondly, negative sampling is dubious from a cognitive standpoint, as it seems

unlikely that when a person studies a word, she would have to generate a number of unre-

lated words in order to learn the word under study. Instead, a mechanism that can establish

the base rate without relying upon a sampling procedure would simplify the model and

would aid in understanding how negative information might be used in cognition.

We developed two analytic solutions. The first is an analog to negative sampling: We

added the base rate of occurrence of every word to a word’s entry as negative informa-

tion. We call the model the global negative (GN) approach.

Fig. 5. Variance accounted for as a function of corpus size and the kind of information used in learning (pos-

itive only vs. positive and negative information).
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The second approach used the distribution of word co-occurrences to infer the relative

weight of an association relative to a base rate. We dubbed the method the distribution of

associations (DOA) approach. Finally, we combined the two approaches to determine if

there is an advantage to using both transformations concurrently.

4.1. Global negative (GN) model

The first step is to construct a global occurrence rate by summing across all columns

of the Word-by-Word matrix:

GNj ¼
Xn
i¼1

Mi;j ð2Þ

where GN is the global negative vector, M is the word-by-word matrix, j is the column

being calculated, and i increments through all n rows in the matrix. It is computed for

each column in the matrix. The entries in the GN vector are directly related to a word’s

overall frequency but deviate slightly due to window size. The vector is then unit normal-

ized by dividing each column in the GN vector by the total magnitude of the global vec-

tor so that the GN vector has a total magnitude of 1:

GNj ¼ GNjPn
k¼1GNk

; ð3Þ

where k increments through each index in the GN vector.

Each index in the vector represents the probability of a word occurring in the window

of another word during training. The normalized vector will be used to add a base rate of

occurrence into a word’s entry in the matrix. Given that previous simulations have

demonstrated best performance with a roughly equal mix of positive and negative infor-

mation, we added the GN vector into a word’s matrix entry proportional to the number

of positive occurrences a word has had using the following equation:

Mi ¼ Mi � GN �
Xn
j¼1

Mi;j

 !
; ð4Þ

where Mi is a word’s row in the matrix, and j goes through each column in the matrix.

Equation 4 states that for each positive occurrence of a word, add in an equal amount

of (global) negative information. Although this could be done continuously, it would be

computationally burdensome to do so. Hence, in the data reported here, the transforma-

tion will be applied after a word-by-word matrix has been formed. The GN approach

does what negative sampling strives to do, that is, to provide the base rate of all associa-

tions into a word’s representation.
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To illustrate the GN transformation, Fig. 6 displays a numerical example of the GN

transformation applied to a hypothesized WW matrix of four words {dog, cat, car, door}.
In step 1, the columns are summed and unit normalized to form the GN vector, and the

sum of the rows is taken to assess the amount of positive information each word has

accumulated. In step 2, the normalized GN vector is added into each word’s row, propor-

tional to the amount of positive information each word had. The result in step 3 is a

transformed matrix that has both positive and negative associations. Words that had few

co-occurrences (e.g., dog-car, cat-car, cat-door) are negatively associated, while words

that had strong contextual overlap (e.g., dog-cat, car-door) have positive associations.

Words that had middling co-occurrences (e.g., dog-door) have associations around zero.

As the demonstration shows, the GN transformation offers a simple mechanism by which

negative information can be incorporated in a word’s representation.

4.2. Distribution of association (DOA) model

Instead of adding negative information directly into a word’s representation, the DOA

transformation uses the distribution of occurrences across the entire matrix. Negative

information is contained in the latent structure of the matrix: It is the relative unique-

ness of two words occurrence rate, above a base rate, that matters. This is similar to

many collocation methods, such as pointwise mutual information (PMI), which weight

the association between two words based upon the co-occurrence and overall frequency

Fig. 6. A numerical example of the GN transformation.
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of those words. Specifically, the formula for PMI between words i and j is classically

defined as follows:

PMI i; jð Þ ¼ log2
P i; jð Þ

P ið ÞP jð Þ ; ð5Þ

where P(i,j) is a count of the number of times that the words i and j occur together, P(i)
is the number of times the word i occurs in the corpus, and P(j) is the number of times

the word j occurs in the corpus. Bullinaria and Levy (2007) demonstrated that positive

PMI (PPMI) provides a better fit than the standard formulation. PPMI simply sets any

negative PMI values to 0.

PPMI provides an excellent fit to word similarity data (Bullinaria & Levy, 2007, 2012;

Recchia & Jones, 2009), and Levy and Goldberg (2014a,b) offer a method by which neg-

ative sampling can be integrated into a PPMI measure (they entitled this measure shifted

PPMI, or SPPMI), by taking the log of the negative sampling parameter k from the PMI

value of two words:

SSPMI i; jð Þ ¼ max PMI i; jð Þ � log kð Þ; 0ð Þ; ð6Þ

where k > 0. The addition of the parameter k means that for a two words to have a posi-

tive PMI value, it must exceed some negative baseline. This transformation has been

shown to improve the fit of the method to word similarity data (Levy & Goldberg,

2014a,b; Levy et al., 2015). The SSPMI will be used as a comparison for the perfor-

mance of the GN and DOA methods.

For the DOA transformation, a count-based transformation similar to PMI will be used,

with the modification that the DOA method will consider the distribution of counts within

a Word x Word matrix, similar to past suggestions in computational linguistics (e.g.,

Gries, 2013). Specifically, instead of a direct measure of the co-occurrence overlap

between two words, as PMI uses, the DOA measure weighs the connection between two

words relative to the connection that the words have to other words contained in memory.

Thus, the transformation described below is not unique in the study of distributional

semantics, but, consistent with the goal of this paper, conceptualizes the contribution in

terms of the interaction of positive and negative information.

The simplest method to weight relative uniqueness is to simply transform each column

into a standard (z) score:

Mi;j ¼
Mi;j � lj

rj
; ð7Þ

where i represents a row in the matrix, j represents a column, lj represents the mean of

the column, and rj represents the standard deviation of the column. The resulting score

indicates how many standard deviations the co-occurrence of two words is, over and

above the other co-occurrence values, providing a relative weighting for that association.
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However, high–frequency words may have generally higher than average co-occur-

rence values with other words, meaning that their relative weights will also be higher. To

normalize for frequency effects, the weights in each row will also be transformed into

z-scores, allowing for the relative importance of associations to be sharpened for an

individual word:

Mi;j ¼ Mi;j � li
ri

; ð8Þ

where li is the mean of a word’s row, and ri is the standard deviation of that row.

The result is that each word’s entry in the matrix is a set of standard scores indicating

how strong the relative association is between two words. Higher values indicate a more

unique association. The transformation provides a direct measure of how strongly two

words are associated over and above the co-occurrence rates of other words. Both the GN

and DOA transformations can be thought of as a sharpening process where the important

associations of a word are highlighted, by including the co-occurrence relationships of

other words into a word’s representation. PMI utilizes a similar operation by normalizing

a word’s count by the total number of occurrences the two words have. Thus, the GN

and DOA transformations can be operationalized as more fine-grained approaches to

quantifying the unique associations between words, conceptualized as balancing the con-

tribution of positive and negative information in forming semantic representations.

To demonstrate the DOA transformation, Fig. 7 displays the same numerical example

as used to demonstrate the GN transformation in Fig. 6. The first step in the DOA trans-

formation is to calculate the mean and standard deviation of each column. In step 2, these

are used to transform each count into a z-score, with the score indicating how unique a

count is, compared to all other counts in that column. In step 3, the matrix now contains

both positive and negative associations, similar to the GN transformation. Step 4 further

smooths the matrix by calculating the mean and standard deviation of the z-scores in each

row, and transforming the z-scores into z-scores that reflect the other associations that the

word has. The resulting matrix in step 5 is the final matrix, and again contains both posi-

tive and negative values. In contrast to the GN transformation, the DOA matrix has posi-

tive associations only to words that have a strong co-occurrence connection (e.g. dog-cat,
car-door), and all other associations are negative. The simulations contained below will

evaluate which transformation best accounts for word similarity data.

4.3. Combination models

The GN and DOA models are obviously connected, but there are some slight differ-

ences. The GN approach adds the base rate of word occurrence directly into a word’s

entry in the matrix. The DOA approach determines the relative weight of an association

by transforming co-occurrence values into standard scores, determining the uniqueness of

the occurrence of two words. By combining these two transformations, it may be possible

to build a more refined measure of a word’s occurrence patterns. We will first add in the
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base rate negative information using the GN transformation, and then normalize the

matrix using the DOA standardization.

Both approaches integrate the information supplied by negative sampling into a word’s

semantic representation using analytical transformations of a word-by-word co-occurrence

matrix. Importantly, the transformations are parameter-free; they rely only on the co-

occurrence values contained in the matrix. The three models, described above, are simple

two-parameter models (window size and the subsampling parameter), a contrast to the

highly parameterized word2vec.

Fig. 7. A numerical example of the DOA transformation.

16 of 30 B. T. Johns, D. J. K. Mewhort, M. N. Jones / Cognitive Science 43 (2019)



5. Results

Table 1 shows the results for the seven previously described word relatedness and sim-

ilarity data sets for the GN, DOA, and combined models, with the results for the posi-

tive-only and positive with negative sampling from Fig. 3 for comparison, as well as the

fit of the SPPMI metric described above.4 As shown in Table 1, the GN transformation

provides a negligible benefit over the negative sampling model and the SPPMI model.

Again, an optimal window size was used in each case. The DOA model, by contrast, pro-

vided a substantial benefit. When the two approaches were combined, there was a further

benefit, suggesting that the GN and DOA transformations provide complimentary forms

of negative information. Put together, they provide a very powerful, yet simple, model of

lexical semantics.

To understand the information contained in the different representations, we took the

similarity to the combined word pair sets from all seven data sets (n = 5,565) and calcu-

lated the inter-correlation of all of the model’s similarity values. The results are presented

in Table 2.

As shown in Table 2, the most important finding is that the similarity for the negative

sampling model and GN model are virtually identical, suggesting that the GN approach is

a direct analogue to negative sampling (but with one fewer free parameter). Negative

sampling is a mechanism to enhance the magnitude of a positive association above a

baseline of occurrence.

So far, we have examined only word relatedness and similarity data. To show that the

advantage seen in Table 1 extends to a different semantic task, we applied the models to

the classic TOEFL test, first used by Landauer and Dumais (1997). The TOEFL is a syn-

onym test in which a person is presented with a target word and a set of four alternatives.

The task is to find alternative closest to the target. The test consists of 80 questions and

performance is determined by counting the number of correct synonyms.

Fig. 8 shows performance of all five models on the TOEFL. The performance of the

different models replicates the word relatedness and similarity measures, demonstrating

that the advantages of the different models extend to a different semantic task. Overall,

Table 1

Fits of the WW model with the five transformations to word relatedness and similarity data

Data SPPMI Positive Neg Samp GN DOA Combined

WordSim-Sim 0.749 0.483 0.762 0.768 0.775 0.811

WordSim-Rel 0.679 0.347 0.653 0.672 0.669 0.696

MTURK-771 0.618 0.394 0.645 0.634 0.658 0.681

RG1965 0.8 0.617 0.737 0.733 0.772 0.791

MEN 0.741 0.544 0.749 0.752 0.768 0.774

Radinsky-2011 0.623 0.488 0.671 0.678 0.684 0.714

SimLex-999 0.266 0.213 0.256 0.286 0.376 0.389

Average 0.639 0.441 0.639 0.646 0.672 0.694
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the negative sampling and GN model outperform the positive-only model, the DOA

model outperforms the GN model, and the combined model provides the best fit.

To help understand what the GN and DOA transformations do to the co-occurrence

values in the word-by-word matrix, Fig. 9 shows histograms of matrix values for the

non-transformed, GN, DOA, and combined models. The values in Fig. 9 were attained

from 200 randomly selected words and for a model with a vocabulary of 10,000 words.

For the non-transformed values, the most common co-occurrence value is zero. All trans-

formations change this distribution into a roughly negatively skewed Gaussian distribu-

tion. All three transformations produce large positive tails. The words contained in the

tail are those words with which a word has the most unique co-occurrence values.

Importantly, both the GN, DOA, and combined distributions are centered on negative

values—indicating that after the transformations most words are not related to most other

words. The reasons underlying the shift are slightly different for the two transformations.

For the GN transformation, the zero or small co-occurrence values are shifted downwards

because the base rate occurrence of a word has been subtracted from the association value.

The downward shift is more pronounced for higher frequency words that have few connec-

tions to other words—if word x occurs frequently with other words, but not with word y,
the x-y association is shifted more negatively than when word x did not occur with many

other words. An example of this can be seen in the DOA transformation applied to the

example WW matrix in Fig. 7. Even though the word dog had a moderate co-occurrence

strength with the word door, after the DOA transformation this association was changed to

a negative value. This occurred because of the strength of the car-door associations caused
all other associations to be negatively weighted. A similar shift occurs for zero values with

the DOA transformation where they are shifted negatively, as the mean of a column will

be positive. The magnitude of the shift depends on the mean and standard deviation of the

column. For both transformations, strong associations remain positive because they co-

occur at a greater frequency than base rate co-occurrence.

In the DOA transformation both the columns (connection to other words) and rows (a

word’s lexical semantic entry) are normalized by standardizing their values. The standard-

ization of a row is more important for low–frequency words, as it is likely to have mostly

negative values after both transformations. After the row has been standardized, however,

many values will be transformed into positive associations, reflecting the distribution of

values within the row. Standardization produces the advantage for the combined GN and

Table 2

Intercorrelations of similarity values for all models

Model 1 2 3 4 5

1. Positive –
2. Neg Samp 0.834 –
3. GN 0.829 0.993 –
4. DOA 0.773 0.935 0.938 –
5. Combined 0.72 0.933 0.939 0.986 –
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DOA transformation, as the DOA transformation provides a mechanism to smooth out

the integration of positive and negative information for an individual word. When a low-

frequency word’s association values do not exceed the base rate, it does not mean that

those associations are unimportant for that word—it simply signals that there were

Fig. 8. Results of the word-to-word matrix model across the various transformations on the TOEFL test.

Fig. 9. Histograms of feature values for the non-transformed matrix values and the three different transfor-

mations for 200 randomly selected words. Each line represents a different word.
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insufficient samples to exceed the base rate. By normalizing by row, low–frequency
words also have positive associations to other words.

5.1. Application to an alternative framework

The foregoing results make it clear that the integration of negative distributional infor-

mation into a direct count-based model’s semantic representation provides a substantial

increase in the model’s predicative power. We kept the underlying representation inten-

tionally simple to explicate the role of negative information. Given that a word-by-word

matrix is not currently a mainstream method of constructing semantic representations, it

is an open question whether the GN and DOA transformations, described previously, can

be applied to an alternative framework. To test the question, the transformations were

added to representations derived from the BEAGLE model of semantics (Jones &

Mewhort, 2007).

BEAGLE is a vector-accumulation model in which distributed representations are

built by learning two types of statistical information: context (the words that co-occur

with a given word in language, e.g., cat-mouse) and order (the shared temporal roles

of words with respect to other words, e.g., both cat and panther pounce on prey).

The information is continuously accumulated in a large, distributed vector as language

is encountered.

BEAGLE has been shown to be highly successful at accounting for a wide variety of

semantic behaviors, including semantic priming (Hare, Jones, Thomson, Kelly, & McRae,

2009; Jones, Kintsch, & Mewhort, 2006), memory search (Hills, Jones, & Todd, 2012),

measuring degradations in semantic memory performance in clinical populations (Johns

et al., 2018), the impact of aging on verbal fluency performance (Taler, Johns, & Jones,

in press), individual differences in language usage (Johns & Jamieson, 2018), and release

from proactive interference in memory (Mewhort, Shabahang, & Franklin, 2018). The

standard model uses Gaussian vectors, however the current work will use a sparse repre-

sentation approximation (see Recchia et al., 2015).5,6

The values in BEAGLE vectors are not direct co-occurrence weights but instead repre-

sent latent patterns of both context and order learning, unlike a word-by-word representa-

tion where each value maps onto the specific association level between two words. As a

result, the association level is distributed across patterns contained in the representation.

Applying the GN and DOA transformations to this representation, should test whether

they can also enhance the representation of models with differing representational

assumptions.

We tested BEAGLE with five different transformations: (a) positive-only, (b) negative

sampling (using only context information as order would require sampling both words

and locations), (c) GN, (d) DOA, and (e) GN-DOA combined. We applied the models to

the word similarity data sets and the TOEFL

Table 3 shows that the simulations mimic the previous results using a word-by-word

representation. The biggest difference is that the GN model exceeds the fits of the DOA

model, although both offer significant improvements over the positive-only model. As
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before, the combined model provided by far the best performance. The results in Table 3

demonstrate that negative distributional information can be integrated into different repre-

sentations with the GN and DOA transformations, allowing for remarkable increases in

performance. The BEAGLE model does not achieve the same level of overall perfor-

mance as the WW model does, but they are close. Obviously, one test does not mean that

the transformations can be applied to every representation type (see note 6), but it does

demonstrate that it can be applied to some.

5.2. Transformation of similarity

So far, the transformations that have been applied to distributional models has been

done at the feature level (either a co-occurrence count in a word-by-word matrix or a

strength value in BEAGLE), in which the value in a word’s semantic vector was changed

to represent how strong that feature is for that word, relative to the representation of the

feature value in other word’s representations. The GN and DOA transformations demon-

strate that by shifting the features of words to reflect how unique a feature value is for a

word (compared to the feature value of all other words), large increases in fits to seman-

tic behavior were observed.

There is another level at which the transformations can be applied: word similarity. In

standard vector-based models (such as HAL, LSA, BEAGLE, and word2vec), similarity

is assessed using the vector cosine between two word’s vectors, as was done in the fore-

going simulations. Given the evidence accumulated so far about the importance of base-

rate information in semantic representation, it is fair to ask whether the transformations

can also be applied to the similarity between words. Similarity can also be changed to

reflect the relative strength of two words, compared to the similarity value that those

words share to all other words in the lexicon.

To do so, the entire similarity space of the words in the lexicon must be computed.

Then the GN and DOA transformations can be applied to the resulting word-by-word

similarity matrix. The GN transformation will directly add in the global similarity levels

Table 3

Fits of BEAGLE models with the five transformations to word relatedness and similarity data

Data Positive Neg Samp GN DOA Combined

WordSim-Sim 0.463 0.753 0.741 0.744 0.784

WordSim-Rel 0.389 0.665 0.647 0.58 0.664

MTURK-771 0.383 0.59 0.603 0.575 0.65

RG1965 0.606 0.686 0.718 0.603 0.786

MEN 0.562 0.712 0.726 0.633 0.755

Radinsky-2011 0.482 0.634 0.653 0.707 0.756

SimLex-999 0.186 0.244 0.268 0.295 0.338

Average 0.438 0.612 0.622 0.591 0.676

TOEFL 68.75% 75% 81.25% 70.0% 87.5%

Note. The values for the word similarity data are Pearson correlation coefficients, while TOEFL values

are percent correct.
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into a word’s similarity values, proportional to the overall similarity that a word has to

all other words. The DOA transformation will change the similarity value into a z-score

reflective of where that similarity value lies in the distribution of all similarity values for

those words.

Table 4 shows the results for the word-by-word matrix model. Table 4 also contains

the fit from the best word2vec model from De Deyne et al. (2016). Table 5 shows the

corresponding results for the BEAGLE simulation. They compared their model fits to the

vectors used in alternative studies using word2vec, including the best model from Man-

dera et al. (2017), and alternative neural embedding models (e.g., GloVe; Pennington,

Socher, & Manning, 2014), and found that their fits were equivalent to other modeling

efforts, and so serve as a strong comparison for the model performance reported here.

The first important trend in the results is that the GN, DOA, and combined transforma-

tions applied to the positive-only model’s similarity space yielded results roughly equiva-

lent fits to previous findings in which the transformations had been applied to the feature

values within a word’s representation. The positive-only model in this refers to the WW

matrix that has not had its values transformed. This table shows that relative weighting is

important not just for semantics representation but also at the similarity level. This impor-

tant finding indicates that it is the relative weighting of a word’s similarity or semantic

features to other words that matters and not necessarily the direct co-occurrence between

those two words.

The combined transformation was the best fitting model for both representation types

applied to the similarity values from the transformed representations. The result confirms

the importance of relative weighting in distributional semantics; the similarity between

words should reflect how similar the two are in the distribution of all similarity values. The

transformations hold at both the feature and similarity level, at least for these two models.

Additionally, note that performance of the word-by-word matrix model was roughly equiva-

lent to the word2vec model used in De Deyne et al. (2016), even though it was much sim-

pler than a neural embedding model, demonstrating the power of this approach.

Table 4

The fits of WW with the GN, DOA, and combined transformations applied to the similarity matrix for both

the positive-only and transformed representation

Data

Positive-Only Transformed

DDPNNone GN DOA Combined None GN DOA Combined

WordSim-Sim 0.347 0.721 0.727 0.739 0.696 0.756 0.74 0.753 0.7

WordSim-Rel 0.483 0.768 0.776 0.791 0.811 0.812 0.8 0.822 0.79

MTURK-771 0.394 0.623 0.609 0.633 0.681 0.661 0.675 0.683 0.71

RG1965 0.617 0.744 0.768 0.786 0.791 0.809 0.825 0.854 0.83

MEN 0.544 0.756 0.754 0.776 0.774 0.789 0.765 0.8 0.85

Radinsky-2011 0.488 0.725 0.728 0.711 0.714 0.721 0.744 0.744 0.711

SimLex-999 0.213 0.288 0.331 0.347 0.389 0.391 0.395 0.4 0.43

Average 0.441 0.667 0.67 0.683 0.694 0.705 0.706 0.722 0.728

Note. DDPN refers to the fits of the best word2vec model from De Deyne et al. (2016).
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5.3. Simplifying the framework

The word-by-word matrix model used here, has three parameters: (a) the subsampling

parameter, (b) window size, and (c) vocabulary size. For the BEAGLE model, there are

two additional parameters (vector size and vector sparsity), although these are fixed

hyperparameters that have a relatively small impact on model performance (Jones &

Mewhort, 2007; Recchia et al., 2015). The vocabulary size parameter is a common

parameter for all distributional models and one that is not easily removed. The subsam-

pling and window size could both be removed with minimal impact on performance. The

window size parameter can be removed by using a weighted window (similar to the oper-

ation of the skipgram implementation in word2vec). As Levy et al. (2015) specify, words

further apart in a sentence are given a lesser learning weight using a harmonic function:

DMwi;wj
¼ 1

ji� jj ð9Þ

where i and j are locations within a sentence, and wi and wj are the corresponding words

in those locations.

Although this weighting scheme can be used within a window, it also provides a mech-

anism by which the window parameter can be removed, by applying the weights to all

words within a sentence. Words that are far away within a sentence will have a minimal

increase in strength.

Using the GN and DOA transformations may make the subsampling parameter unnec-

essary, as the base rate occurrence of very high frequency would be high for every word,

resulting in these words having a negligible impact on model performance once the nor-

malization procedures have been applied. That is, adding very high-frequency words into

a model’s representation will produce a constant increase in similarity for all words, but

the normalization procedures neutralizes this artifact.

Table 5

The fits of BEAGLE with the GN, DOA, and combined transformations applied to the similarity matrix for

both the positive-only and transformed representation

Data

Positive-Only Transformed

None GN DOA Combined None GN DOA Combined

WordSim-Sim 0.463 0.766 0.764 0.77 0.784 0.791 0.793 0.826

WordSim-Rel 0.389 0.717 0.718 0.727 0.664 0.716 0.723 0.729

MTURK-771 0.383 0.625 0.624 0.627 0.65 0.66 0.652 0.664

RG1965 0.606 0.713 0.726 0.739 0.786 0.798 0.803 0.825

MEN 0.562 0.765 0.756 0.757 0.755 0.774 0.789 0.802

Radinsky-2011 0.482 0.721 0.714 0.724 0.756 0.744 0.743 0.735

SimLex-999 0.186 0.277 0.283 0.285 0.338 0.341 0.358 0.364

Average 0.438 0.655 0.655 0.661 0.676 0.689 0.694 0.706
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To test the impact of having a weighted window and removing the subsampling parame-

ter, four simulations were conducted crossing the two parameters: (a) with and without a

weighted window, and (b) with and without subsampling. We tested both the word-by-word

matrix model and the BEAGLE model. When there is no weighted window, all words in the

sentence will be updated with a weighted window across the entire sentence (i.e., there is no

set window size).

Table 6 shows the results for the word-by-word matrix model; Table 7 shows the corre-

sponding results the BEAGLE. In both cases, removing subsampling had a minimal impact

on performance. A weighted window had a positive impact for the WW model, but a nega-

tive impact on the BEAGLE model, demonstrating, again, that some transformations are

representation dependent. Thus, although performance drops slightly from having an opti-

mized window size (as would be expected), it is possible to reduce the model to a simple

one-parameter (vocabulary size) model, while still retaining excellent fits to lexical semantic

behaviors (0.722 average correlation with the optimized word-by-word matrix model vs.

0.704 for the simplified word-by-word matrix model; 0.706 average correlation for the opti-

mized BEAGLE model vs. 0.683 for the simplified BEAGLE model.

As in all formal models, adding a parameter allows greater flexibility in accounting for

data. However, there needs to be a consideration for parsimony. The simulations con-

tained in Tables 6 and 7 demonstrate that with the GN and DOA, it is possible to con-

struct very simple but powerful models of lexical semantics which offer comparable

performance to much more complex neural embedding models.

5.4. Discussion

This section tested two analytical matrix transformation techniques designed to inte-

grate negative information into a word’s semantic representation, but without having to

use a free parameter or a sampling methodology. The transformations were designed with

both parsimony and cognitive plausibility in mind. The first transformation, the global

negative technique, adds in negative global co-occurrence rates directly proportional to

Table 6

Effects of using a weighted window and removing the use of subsampling on the WW model.

Data

No Weighted Window Weighted Window

No Subsampling Subsampling No Subsampling Subsampling

WordSim-Sim 0.784 0.801 0.806 0.811

WordSim-Rel 0.764 0.763 0.742 0.753

MTURK-771 0.638 0.642 0.684 0.678

RG1965 0.803 0.812 0.821 0.854

MEN 0.781 0.782 0.793 0.801

Radinsky-2011 0.694 0.684 0.698 0.697

SimLex-999 0.293 0.313 0.382 0.365

Average 0.68 0.685 0.704 0.708
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the positive associations that a word has received; it turned out to be a direct analog to

negative sampling.

The second technique, which we referred to as the distribution of associations (DOA)

transformation, infers the strength of the association between two words by taking into

account the co-occurrence patterns of all other words in the matrix. The result is a matrix

of standardized associations, signaling how unique the co-occurrence of two words are,

over and above all other word co-occurrences. By combining these two techniques, better

fits to word pair similarity and synonym tests were attained. Additionally, it was shown

that these transformations could be applied to an alternative framework, the BEAGLE

model of semantics, and that the transformations can be also applied at the word similar-

ity level. Finally, we demonstrated that the transformations are powerful enough that the

two main free parameters, window size and the subsampling parameter, can be removed

with only a small drop in performance for the models.

6. General discussion

The goal of this article was to evaluate the role of negative sampling in training distri-

butional models of semantics. The simulations contained in this article show that negative

sampling serves to integrate an alternative type of distributional information into a

word’s semantic representation. Specifically, we showed that negative sampling includes

base rate occurrence in a word’s representation. The model used to explore this effect

was based on a word-by-word matrix model, and when negative sampling is used in this

framework the resulting values in the matrix represent positive co-occurrence over a neg-

atively sampled base rate. It was further shown that this process may be integrated into a

word’s representation using multiple parameter-free analytical techniques, resulting in

both a more parsimonious and more powerful model.

The results demonstrate that negative information plays an important role in distributional

semantics. The GN and DOA transformations calculate a semantic feature’s uniqueness to that

individual word, when compared against the feature value for other words. The

Table 7

Effects of using a weighted window and removing the use of subsampling on the BEAGLE model

Data

No Weighted Window Weighted Window

No Subsampling Subsampling No Subsampling Subsampling

WordSim-Sim 0.792 0.806 0.781 0.81

WordSim-Rel 0.717 0.701 0.654 0.692

MTURK-771 0.656 0.654 0.664 0.661

RG1965 0.802 0.828 0.77 0.804

MEN 0.794 0.796 0.769 0.792

Radinsky-2011 0.688 0.697 0.664 0.699

SimLex-999 0.334 0.334 0.362 0.351

Average 0.683 0.688 0.666 0.687
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transformations do so in slightly different ways, and, when combined, they provide superior

results. Given that the transformations work at both the semantic feature and word similarity

levels, relative comparison of word properties is a general component of lexical semantic

memory.

The GN and DOA transformations were also successfully applied to multiple distribu-

tional models. Given the diversity of types of distributional models, it is not necessarily

the case that these techniques will work on all representation types. However, the under-

lying idea of the operations can be used where the strength of other word’s values is used

to determine the relative strength of a word’s feature or similarity. The proper transfor-

mation may depend on the mathematical properties of the underlying representation of a

model, an important topic for future research.

The goal of this article was not to propose a new type of distributional model. Indeed, as

described, the DOA transformation has much in common with past proposals, such as

shifted PMI. Rather, the goal was to understand the interaction between positive and nega-

tive information in forming semantic representations of words. Through the simulations in

this article we have demonstrated that negative information plays an important role in build-

ing distributed semantic representations, and we have conceptualized its impact. Our hope

is that this greater level of understanding about the role of negative information in semantic

behavior leads to better, simpler, and conceptually clear models of semantic behavior, with

the GN and DOA transformations initial guidelines as to how this can be done.

The trajectory of this research serves as a reminder of the importance of understanding

the theoretical basis of the computational models that are used in the cognitive sciences. As

Mandera et al. (2017) note, the fits provided by neural embedding models are undeniably

impressive, but these models have a much greater level of parameterization than standard

models (Levy et al., 2015; Asr & Jones, 2017). We should not be surprised that extra param-

eters provide significant power to the model. The number of parameters matters relatively

little in applied research where the models are engineering solutions designed to solve a

specific problem. In contrast, the number of free parameters is an important consideration in

cognitive modeling because the parameters often serve important functions in explaining

human behavior. Further, methods of model comparison penalize models that have a large

number of parameters (e.g., Akaike, 1974; Schwarz, 1978).

To continue developing cognitive theory, distributional models will need a better grasp

of model complexity. With certain semantic datatypes (e.g., verbal fluency; Hills et al.,

2012; Johns et al., 2018; Taler, Johns, Young, Sheppard, & Jones, 2013) it is possible to

use standard model comparison techniques like AIC (Akaike, 1974) to compare the com-

plexity of process models using distributional semantic representations, but this still does

not get to the problem of representational complexity (for a more in depth discussion of

this problem, see Jones, Hills, & Todd, 2015). Outside of number of parameters, there is

also complexity in training materials. Some materials are more informative depending on

task (e.g., Johns et al., 2019), while some models benefit from increased amount of train-

ing materials (e.g, Recchia & Jones, 2009). Quantifying model complexity is an important

challenge in constructing cognitively plausible models of semantic memory, and one that

the field needs to devote attention to.
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We do not intend to imply that word2vec is a poor model; indeed, as previous research

has shown, it is a very powerful model. But its success does not appear to reflect the use

of a connectionist architecture or of active prediction. Instead, its success reflects how it

interprets linguistic information.

Subsampling of words and negative sampling are clearly important components of distri-

butional modeling, as previous research and this article have shown convincingly. The role

of negative sampling can be readily accounted for with simple transformations of semantic

vector representations, either at the feature or similarity level. The power of the transforma-

tion methods described in this paper is not from their mathematical sophistication, but

instead the ideas that underlie them. They offer an insight into how semantic representations

are organized and compared in the human mind. The fact that they offer improved fits to

data is tangential—it is the understanding that they provide that is important.

A coherent science requires coherent theory. Even though a field like distributional

semantics and language comprehension lends itself to advanced machine learning tech-

niques, it does not mean that we should not try to understand human cognition. Instead,

as more advanced techniques are being used in the cognitive sciences, it will become

even more necessary to understand the reason why different computational techniques are

successful in accounting for human behavior.

As computational cognitive science moves forward and machine learning begins to

play a larger role both in theoretical and empirical pursuits, it will still be necessary to

ground results in cognitive theory. The classic latent semantic analysis model (Landauer

& Dumais, 1997) is a case study in how to do so successfully. Although Landauer and

Dumais introduced advanced computational techniques to the field, they also put serious

effort into attaching the techniques to theories of cognition. The results of this article

demonstrate the continued importance of this practice.

Notes

1. The word2vec architecture has two possible model directions: The context may be

used to predict the word (referred to as a CBOW), or the word may be used to pre-

dict the context (a skipgram). The theoretical claims in this paper apply to either

training scheme, but we will focus on the skipgram in all examples as it has been

the most prominently used in the literature.

2. A value of 6 9 10�6 for t was found to perform best for this modeling framework.

This parameter was held constant across all simulations. This may lead to poorer

performance depending on corpus size and construction, but for the sake of sim-

plicity, the parameter was not manipulated.

3. Here the Finkelstein et al. (2001) was split into a similarity and relatedness dataset,

following the suggestions of Agirre et al. (2009). This split is common practice in

analyzing distributional models (e.g., De Deyne et al., 2016).

4. The performance of the SSPMI model was optimal at k=5.
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5. Similar to the work in Recchia et al. (2015), environmental vectors will have a

dimensionality of 20,000 with 6 non-zero values.

6. The transformations described here work much better with the sparse implementa-

tion of the model, rather than the Gaussian implementation. This is due to feature

values in these vectors already having a Gaussian distribution post-training, and so

the transformations have a relatively small impact on the resulting representations.

Different representation schemes will likely need unique transformations in order

to integrate negative information optimally.
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