
© 2010 The Psychonomic Society, Inc.	 662

A model of a cognitive phenomenon typically requires 
accounts of representation, of process, and of how the two 
interact (Estes, 1975). These two aspects of a model are 
interdependent, with the process requiring a representa-
tion on which to operate and the representation requiring a 
process to simulate behavior. For example, Rumelhart and 
McClelland (1982) created a model in which 16-feature 
vectors were used to represent capital letters in which each 
feature was the presence or absence of a line at a particular 
orientation, and they evaluated the process of interactive 
activation. The use of this representation was justified by 
research on how the visual system responds to primitive 
features. Similarly, some models use realistic representa-
tions of faces (e.g., Dailey & Cottrell, 1999) and ortho-
graphic and phonological characteristics of words (e.g., 
Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001) or 
digits (e.g., Hinton, 2007).

If insufficient research exists to point to the correct 
representation, a common practice in cognitive mod-
eling is to use randomly generated representations to 
stand in for psychological structure. This practice makes 
it unlikely that the representation is biased toward sup-
porting the process mechanism, and the model can be 
refined later when further research reveals the correct 
representation. An example is Hintzman’s (1986) use of 
random representations to simulate schema abstraction 
using Posner and Keele’s (1968) stimuli: Stimuli were 
random dot patterns, and exemplars of the same category 
were random perturbations of a prototype pattern. Hintz-
man (1986) was able to create equivalent structure in his 
simulation by generating prototypes as random vectors 
and generating exemplars within a category as distor-
tions of a prototype.

However, caution is needed if random representations 
are used. The performance of cognitive models is depen-
dent largely on valid representational assumptions. For 
example, Daugherty and Seidenberg’s (1992) connection-
ist model was only able to correctly simulate past tense 
verb processing when the model was trained on represen-
tations that contained the correct distributional structure. 
Alternatively, it is also possible for a process model to 
give a good account of the human behavior only when 
random representations are used, but not when the cor-
rect representational structure is encoded. Cree, McRae, 
and McNorgan (1999) argued that using a plausible repre-
sentational structure, rather than random representations, 
constrains the modeling exercise by reducing degrees of 
freedom.

Random representations are commonly used in models 
of episodic memory. In global matching models of rec-
ognition memory (e.g., Hintzman, 1988; Murdock, 1982; 
Shiffrin & Steyvers, 1997), decisions are made by assess-
ing the similarity of the probe word to the (usually noisy) 
study items with particular processing mechanisms. The 
use of random representations in these models produces 
a hidden assumption that the distribution of similar-
ity across randomly selected words is symmetric and is 
approximately Gaussian. The distributional assumption 
comes from the design of a typical memory experiment in 
which random words are used. Because words are selected 
randomly, they are assumed to have only random simi-
larity on dimensions extraneous to the experimental ma-
nipulation (e.g., orthography, phonology, and semantics); 
however, this assumption is unlikely to be valid. Hence, 
it is common to explicitly control confounding factors, 
such as frequency. In this examination, we focus on lexical 
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resentation is created by summing and convolving words 
that occur in sentences with a target word. The use of 
convolution allows order information to be included (the 
sentential position of the word relative to other words), as 
well as the co-occurrence information in LSA. BEAGLE 
has successfully accounted for a variety of semantic be-
haviors, including semantic typicality, categorization, and 
sentence completion (Jones & Mewhort, 2007), as well 
as a range of semantic priming data (Jones, Kintsch, & 
Mewhort, 2006).

The COALS model. COALS (Rohde, Gonnerman, & 
Plaut, 2005) uses a word 3 word co-occurrence matrix, 
but uses correlations instead of raw frequency. This matrix 
is subsequently reduced in dimensionality with SVD simi-
larly to LSA. Across a wide variety of tasks, Rohde et al. 
demonstrated that COALS outperforms LSA, WordNet, 
and thesaurus-based distance measures.

Pointwise mutual information (PMI). PMI (Recchia 
& Jones, 2009) is a pure co-occurrence metric, computed 
as the probability of observing two words together divided 
by the probability of observing each independently. Rec-
chia and Jones computed PMI values over a large corpus 
of Wikipedia articles (~400,000 articles) and found that 
PMI produced a significantly better fit to human rating 
data than did LSA or other similarity metrics.

Random Representations
To compare the distributions created by the semantic 

measures, we explored five common types of random vec-
tors that have been used to represent semantics in influen-
tial cognitive models.

Gaussian vectors. A word’s representation is created 
by randomly sampling vector elements from a Gaussian 
distribution, N(μ, σ). This type of representation has been 
used in a variety of models of recognition (e.g., Murdock, 
1982). In the following analysis, vectors are created as in 
Murdock, with a vector dimensionality of 250 (μ 5 0 and 
σ 5 √1/250 ).

Gamma vectors. A word vector is created by sam-
pling integers from a gamma distribution. This type of 
representation is used in the retrieving effectively from 
memory (REM) model of recognition memory (Shiffrin 
& Steyvers, 1997) and in related models, such as the REM 
lexical decision model (REM–LD; Wagenmakers et al., 
2004), that are designed to explain lexical decision. We 
constructed these vectors as is specified in Shiffrin and 
Steyvers, with a length of 20 and with g 5 0.45.

MINERVA vectors. In the influential MINERVA 2 
model of memory (Hintzman, 1986, 1988), vector ele-
ments are selected randomly from the set {21, 0, 1}. A 
value of 1 represents a positive link between the word and 
that feature, 21 represents an inhibitory link, and 0 is de-
fined as either irrelevant or unknown for that particular 
word and feature. Vectors were constructed with a length 
of 20, as in Hintzman (1988).

Sparse binary vectors. In this type of representation, 
the majority of entries are zeros, with some entries set to 
one at random locations. For instance, in Plaut (1995), 
elements in a word’s semantic representation had a 10% 

semantics—a factor often ignored, because it is difficult 
to quantify and control. In assuming that two randomly 
selected words have only a random expected semantic 
similarity, random representations seem appropriate.

However, the use of random representations in many 
cognitive models assumes that semantic similarity is 
symmetrically distributed across all sampled words. We 
demonstrate that this is unlikely to be the case with actual 
words used in experiments and that this may produce se-
rious consequences for conclusions drawn from process 
models that use random representations. Multiple tech-
niques have recently emerged that allow convergent tests 
of the distributional characteristics of semantic similarity 
to test the assumptions made by models that use random 
representations.

ANALYSIS

Comparison distributions are needed for evaluating the 
assumption of random similarity. Our analysis uses three 
types of semantic similarity measures to create distribu-
tions: measures computed from free-association data, a 
hand-coded lexical database (WordNet), and corpus-
based co-occurrence models. These semantic similarity 
measures are compared against common methods for con-
structing random representations.

Semantic Measures
Word association space (WAS). Steyvers, Shiffrin, 

and Nelson (2004) applied singular value decomposition 
(SVD) to the free-association data from Nelson, McEvoy, 
and Schreiber’s (1998) norms. Steyvers et  al. demon-
strated that semantic similarity measures from the result-
ing reduced vectors offer a good predictor of similarity 
effects in recognition and recall.

WordNet similarity. WordNet (Miller, 1990) is a hand-
coded lexical network in which nodes contain one or more 
synonymous words and are linked together via lexical re-
lationships (e.g., hypernymy and holonymy). A variety of 
methods have been proposed to compute similarity from 
the network—we use the Jiang–Conrath distance measure 
(JCN) here, because it maps best onto human similarity 
ratings (Maki, McKinley, & Thompson, 2004). JCN is a 
distance metric that basically counts the number of nodes 
and edges between two concepts in the network.

Latent semantic analysis (LSA). This method (and 
those that follow) differs from the WAS of Steyvers et al. 
(2004), in that it does not use data from human experi-
ments to infer a semantic representation but, instead, uses 
statistical regularities computed from a large text corpus. 
In LSA (Landauer & Dumais, 1997), a word 3 document 
matrix is decomposed using SVD so that each word is rep-
resented by a vector containing the ~300 dimensions with 
the largest eigenvalues. LSA representations have seen suc-
cess in accounting for a variety of semantic behaviors.

BEAGLE. In Jones and Mewhort’s (2007) BEAGLE 
model, a representation of a word is built through experi-
ence with a text corpus. Words are initially represented 
by random Gaussian vectors, and a word’s semantic rep-
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For the randomly generated representations, we created a distribu-
tion of 100,000 similarity comparisons for each representation type. 
The distribution was constructed by randomly generating two vec-
tors from the given representation type and computing the similarity 
between them. Similarity was measured with a vector cosine for all 
random representations.

To evaluate distribution shape, we used two methods of assess-
ing normality: skewness and normal quantile–quantile (Q–Q) plots. 
Skewness is the third moment about the mean, and it signals asym-
metry in a distribution. Q–Q plots are used to assess the standard-
ized difference between an observed distribution and a theoretical 
(in this case, Gaussian) distribution.

Results

The skewness values for the similarity distributions of 
both the semantic spaces and random representations are 
plotted in Figure 1. As the figure shows, all the seman-
tic spaces create positively skewed similarity distribu-
tions. That is, there tends to be a greater number of low-
similarity scores and a small number of high-similarity 
scores in a given distribution of randomly selected words. 
Co-occurrence models (LSA, BEAGLE, and COALS) 
produced the lowest skew (from 1.06 for BEAGLE to 
2.01 for COALS). The PMI distribution produced the 
largest skew, likely due to the fact that the metric is a 
pure co-occurrence count with a broader possible range. 
In the middle was the JCN measure, with a skewness of 
2.61, and the WAS of Steyvers et al. (2004), with a skew-
ness of 8.04.

probability of being nonzero. Sparse binary vectors have 
been used to model lexical priming (Plaut, 1995) and 
recognition memory (Dennis & Humphreys, 2001; Nor-
man & O’Reilly, 2003), among other domains. Similar to 
Plaut’s simulations, we generated vectors with a length of 
100, with each element having a 10% probability of being 
nonzero. In addition, we tested binomial distributions 
(sparseness of 50%) to examine the effect of sparseness 
on the similarity distributions.

Dichotomous vectors. A common representation 
used in connectionist modeling is a random vector com-
posed equally of 1 or 21 elements. These are similar to 
MINERVA vectors, but without zero-valued elements. 
Dichotomous vectors have been used in a variety of mod-
els, such as connectionist models of semantic priming 
(e.g., Masson, 1995). Vectors with a length of 100 were 
used in the following simulations.

METHOD

To calculate similarity distributions using the semantic measures, 
we selected 1,000 words from the Toronto word pool (Friendly, 
Franklin, Hoffman, & Rubin, 1982) and computed the similarity 
between each pair of words. Next, to examine the similarity dis-
tribution under each representation, we randomly sampled 50,000 
of these semantic comparison values. For WAS, LSA, BEAGLE, 
and COALS representations, the similarity metric used was a vector 
cosine. To compute PMI values, we used a tool made available by 
Recchia and Jones (2009) and computed PMI values for the word 
pairs across 400,000 documents from Wikipedia.
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Figure 1. Levels of skewness for the semantic metric distributions and the random repre-
sentation distributions. BEAGLE, bound encoding of the aggregate language environment; 
LSA,  latent semantic analysis; COALS, correlated occurrence analogue to lexical semantic; 
JCN, Jiang–Conrath distance measure; WAS, word association space; PMI, pointwise mu-
tual information.
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ing a list and later making old/new judgments for probe 
words. The simulation varies the type of representation 
used for words—random versus semantic. Recognition 
is then simulated by using signal detection as a process 
model and by fitting an optimum criterion to the human 
data. The simulation demonstrates the effect that skewed 
similarity distributions have on a signal-detection deci-
sion mechanism.

To fairly compare the random and semantic similar-
ity distributions, we equated them to a normalized scale. 
Similarity distributions from each of the semantic met-
ric and random representations were normalized within a 
range of 0 and .5 and were centered on a mean of .25: This 
procedure allows us to evaluate the shape of the distribu-
tion, while centering the distributions on the same mean 
and within the same range.

Evidence distributions for new and old items were 
simulated for lists of 20 words. The evidence for a probe 
was the similarity of the probe to the 20 items on the list. 
For “new” probes, this evidence was simply the mean 
of 20 randomly sampled similarity values (because new 
probes are randomly similar to the contents of memory). 
For “old” probes, this evidence was the average of the 
similarity of the item to itself and to the other items on 
the list (simulated as the mean of 19 randomly sampled 
similarities and the value of 1, representing the similarity 
of the word to itself). This similarity sampling process is 
essentially equivalent to how Murdock (1982) simulated 
recognition using composite vectors following his theory 
of distributed associative memory (TODAM). The sam-
pling process was repeated 50,000 times for each similar-
ity distribution.

To compare the resulting evidence values, we calcu-
lated the discriminability (measured with d ′) for each 
simulation (d ′ is a measure of how distinct studied items 
are from nonstudied items). Figure 5 displays the d ′ val-
ues for the different similarity distributions compared 
with the d ′ from a simple recognition experiment that 
used a list length of 20 (Dennis, Lee, & Kinnel, 2008). 
As the figure shows, all of the semantic distributions 
have higher d ′ than do the random distributions. In ad-
dition, the d ′ values for the random representations are 
much closer to the behavioral data from Dennis et al. 
The difference in magnitude demonstrated for d ′ values 
for semantic and random similarity was statistically reli-
able [t(11) 5 4.75, p , .001]. To evaluate the effect of 
skew in the similarity distributions on the resulting d ′ 
values, we computed the partial correlation between d ′ 
and skewness (controlling for kurtosis and variance) for 
the distributions, which yielded robust results (r 5 .913, 
p , .001).

The skewness of the similarity distribution has a large 
effect on the calculation of evidence distributions, be-
cause the probability of sampling lower similarity values 
is much greater than it is in a symmetric distribution. 
Hence, with “true” semantic representations, an old item 
tends to be more distinct from other random items on the 
list, producing a greater difference between old and new 
evidence distributions. This demonstration is certainly not 

In contrast, all of the random representations produced 
skewness values of essentially zero (this is expected by 
their construction). The only distribution that was mildly 
positively skewed was the sparse binomial distribution, 
with a skewness of 0.21, whereas the Gamma distribution 
was mildly negatively skewed, with a value of 20.17. This 
simple analysis demonstrates that the similarity distribu-
tions created by semantic metrics and randomly generated 
representations are considerably different. Two randomly 
selected words are likely to be less similar (relative to the 
other values in the distribution) for semantic models than 
for random representations.

The Q–Q plots are displayed in Figure 2 for the seman-
tic space distributions and in Figure 3 for the distribu-
tions computed from the random representations. Again, 
the semantic distributions display positive skew, with all 
of the models having fewer than expected high-similarity 
values. In four of the distributions (WAS, JCN, LSA, and 
BEAGLE), there also tend to be fewer than expected low-
similarity values. Again, the random representation dis-
tributions produce very different results—there is little 
deviation from normality.

As a final method of visualizing the data, we plot the 
probability of sampling a similarity value on an equated 
scale for the different semantic and random representa-
tion distributions. To make the different distributions easily 
comparable, we normalized each distribution with a linear 
transformation within the range of 0–1. The individual 
probability distributions for both the semantic space and 
the random representation distributions are displayed in 
the top panel of Figure 4, whereas the average distributions 
for each type (with a polynomial curve fit) are displayed 
in the bottom panel. This figure depicts what was implied 
by the two previous analyses: Randomly generated repre-
sentations tend to be approximately normally distributed, 
whereas the semantic space models are positively skewed.

DEMONSTRATIONS

To demonstrate how the false assumptions made by 
random representations might affect a process mecha-
nism, we conducted two brief simulations using recogni-
tion memory data—the first using classic signal detec-
tion and the second using a particular process model to fit 
data from a false-memory experiment. Both simulations 
clearly demonstrate that the use of random representa-
tions can allow a process model an unnecessary degree of 
freedom for fitting human data. However, when the repre-
sentation is fixed to reflect plausible semantic similarity 
structure, a process model can have considerably more 
difficulty reproducing the correct human behavior. This 
pattern indicates that a process mechanism is incorrect if 
it relies on an incorrect structural representation to simu-
late the human data.

Demonstration 1: Signal Detection  
in Recognition Memory

In this demonstration, we explore signal detection as 
a recognition process by simulating the task of encod-
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Figure 2. Normal Q–Q plots for the semantic metrics.
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Here, we simulate associative false recognition with the 
model, using both random and structured representations 
of semantics. Robinson and Roediger (1997) found that, 
as the number of studied items that are related to a critical 
lure is increased, so is the probability of falsely recogniz-
ing that critical lure. The purpose of this demonstration is 
to compare the ease with which a simple process model 
like MINERVA is able to model this effect when it is using 
random representations versus when it is using representa-

meant as a refutation of signal detection theory, but in-
stead demonstrates that using realistic representations of 
semantics imposes significant constraint on a processing 
model’s ability to simulate data.

Demonstration 2: MINERVA and False Memory
The MINERVA 2 model of Hintzman (1986) has been 

used to successfully account for a variety of categori-
cal false-recognition effects (Arndt & Hirshman, 1998). 
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man (1998), by using prototype and exemplar vectors. A 
prototype vector (representing the critical word) is first 
generated by randomly sampling elements from the set 
{1, 0, 21} with equal probability. Each item in the word 
list is then created by randomly perturbing elements in the 
prototype vector. This process requires a distortion param-
eter, which determines the probability of switching ele-
ments from the prototype vector when creating a list item 
vector. The distortion parameter determines how similar 
the list items are to the critical word. The important point 
is that both the semantic and random representations con-
tain the same elements (same quantities  of 21s, of 0s, and 
of 1s). The difference is that the elements are arranged in-
dependently for the random representations, whereas they 
are arranged to respect the interword similarity structure 
from WAS in the semantic version.

For MINERVA with a semantic representation, the re-
sults of Robinson and Roediger (1997) were modeled by 
randomly selecting three word lists and by adding 3, 6, or 
9 items from one of the lists into a study list. Because the 
word lists in Robinson and Roediger were longer (they 
also used 12 and 15 associates), 27 randomly selected 
words from the Toronto word pool were added into the 
study list. To simulate this with MINERVA using random 
representation, we created 3, 6, or 9 exemplars for three 
random prototypes and added them to the study list. We 
also added 27 random vectors into the study list to make 
the two simulations equivalent. Decisions are based on 
activation levels of a probe to the studied items (echo 
intensity; Hintzman, 1986), calculated by summing the 
similarity across all items in the study list.1

tions that contain knowledge about the similarity structure 
of the actual words.

To construct MINERVA vectors that contain plausible 
semantic structure, we transformed the WAS representa-
tions from Steyvers et al. (2004). Typical applications 
of MINERVA use ternary vectors with a fairly low di-
mensionality. Hence, WAS vectors were collapsed from 
400 to 20 dimensions by summing every 20 successive 
elements in a WAS vector into a single element in the re-
duced vector. This reduced vector was then transformed 
into a ternary vector, with values of the set {21, 0, 1}; 
the magnitude of the summed WAS values was recoded 
so that the highest third were assigned 11 (represent-
ing a high weighting on that feature), the middle third 
were assigned 0, and the lowest third were assigned 21. 
To ensure that the MINERVA-transformed vectors still 
reflected the semantic structure in the original WAS 
vectors, we computed the word 3 word cosines between 
vectors in both representations and correlated the two 
matrices: The original vectors and their ternary trans-
formed versions were highly correlated (r 5 .67, p , 
.001), indicating that the transformed vectors contain 
an arrangement of elements that reflects the semantic 
structure in the original WAS vectors. Using the false-
recognition lists from Stadler, Roediger, and McDermott 
(1999) and Gallo and Roediger (2002), there was a high 
average similarity of the critical word’s representation to 
the representations of the list items across the 52 word 
lists (r 5 .35, p , .001).

Random representations for critical words and their 
corresponding lists were created as in Arndt and Hirsh-
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of a nonzero element switching to zero during study. 
The simulation with random representations includes 
an additional distortion parameter (described above) to 
create the semantic structure. These parameters were fit 
to the data from Robinson and Roediger (1997) using a 
Nelder–Mead simplex algorithm. The results of the sim-
ulation are displayed in Figure 6: The MINERVA model 
that uses random representations was able to reproduce 
the overall trend in the data. However, this was not the 
case with the MINERVA model that used semantic rep-
resentations—this model tended to falsely recognize 
critical items over studied items, which is not the case 
with the human data. The random representation version 
of the model produced an excellent account of the data 
(R2 5 .98, p , .001). However, the version based on the 
true semantic similarity of the words used fit no better 
than chance (R2 5 .05, p 5 .45).

This simulation provides a simple demonstration of 
how a process model that has false representation as-
sumptions may be incorrectly accepted as a plausible 
model. The only difference between the two models is in 
their representation structure—the process is identical. 
Whereas the semantic version contains the “true” seman-
tic structure for the exact words used in the experiment, 
the random version uses the distortion parameter to create 
the semantic structure that is most likely if this process 
account is correct. It is exclusively the incorrect inferred 
semantic structure that allows the process account to fit 
these data. If the correct representational structure were 
used, the process account would be rejected.

DISCUSSION

The use of randomly generated representations con-
tains the assumption that semantic similarity is normally 
distributed over randomly selected pairs of words.2 This 
assumption was shown to be false across many different 
semantic metrics that have demonstrated success at ac-
counting for human data. In experiments using words, 
two randomly selected words are likely to be relatively 
less similar (compared with the distribution of all possible 
pairs) than is implied by using random representations. 
Because similarity plays a central role in the processing 
mechanisms used by many cognitive models, the use of 
random representations may have consequences for con-
clusions drawn from simulations using these models. As 
McClelland (2009) has noted, “simplification is essential, 
but it comes at a cost, and real understanding depends in 
part on understanding the effects of simplification” (p. 18). 
The use of random representations in the development of 
cognitive models has been a necessary simplification for 
our understanding of cognitive processes. In making this 
simplification, researchers have made use of representa-
tions whose assumptions may not be entirely accurate, 
but, through the use of this simplification, modelers have 
made fundamental discoveries about how memory pro-
cesses work. It has been only within the last decade that 
researchers have had access to realistic representations of 
lexical semantics. The task for the future is to integrate 
semantic representations with a cognitive process model 
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for a fuller understanding of how they work together to 
produce observable behavior.

Recent models have begun to explore this type of in-
tegration. For example, Monaco, Abbott, and Kahana 
(2007) have created a neural network model of the mirror 
effect of frequency, using lexical semantic representations 
taken from the WAS of Steyvers et al. (2004). Kimball, 
Smith, and Kahana (2007) have developed a model of 
false recall that uses the association strengths taken from 
WAS. Ideally, future models will combine a learning 
process that builds a representation through exposure to 
environmental information that can then feed into a pro-
cessing mechanism. For example, Johns and Jones (2009) 
have used representations built through a co-occurrence 
learning process to drive a processing model of both false 
recognition and false recall. Similarly, Howard, Shankar, 
and Jagadisan (in press) have recently used the tempo-
ral context model to build semantic representations from 
text; these representations can naturally feed back into the 
same mechanisms that were used to build them to simulate 
memory retrieval processes. These models suggest that it 
is no longer necessary to assume random representations 
for lexical semantics when modeling cognitive phenom-
ena, but that item-specific semantic representations are 
now available and offer additional modeling constraints 
about the structure of semantic similarity on which a pro-
cess mechanism must operate to produce behavior in a 
given task.
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