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The goal of psychology is to generate a 
coherent explanation of behaviour that 
generalizes over problems and domains1. 
Yet the discipline has adopted a divide and 
conquer strategy with distinct research 
groups focused on explaining different 
phenomena2. This situation has led to 
a divisive view of memory composed of 
distinct theories for different systems 
including episodic memory, semantic 
memory, procedural memory, priming, 
conditioning and non-​associative learning3. 
Based on that perspective, it has been 
asserted that identifying general principles 
of memory is a fantasy and that no profound 
generalizations can be made about memory 
as a whole4,5.

Modern psychology often distinguishes 
between explanations of memory of the 
specific and knowledge of the general. 
In the field of memory, the distinction is 
discussed as episodic versus semantic6. 
In categorization, the distinction is 
discussed as exemplars versus prototypes7. 
In language, the distinction is discussed 
as instances versus rules8,9. In learning, 
the distinction is discussed as memory 
versus association10,11. For some time, this 
divide and conquer strategy bore fruit, 
producing increasingly articulate theories 

Over the past 45 years, computational 
modelling has been at the forefront 
of developing an integrative theory of 
cognitive psychology. The computational 
view of cognition regards the taxonomy 
of independent memory systems as a 
theoretical challenge in need of a cohesive 
explanatory framework. There are now 
several integrative models of memory and 
cognition that together present a picture of 
theoretical progress that knits together data 
and behaviours over an impressive range of 
cognitive domains, including memory13–19, 
attention20–22, categorization7,13,20,23, action24,25, 
decision-​making26,27, language28–32 and 
associative learning33–37. However, that 
programme remains in progress rather 
than completed.

In this Perspective, we argue that instance 
theory as represented in instance models 
(such as MINERVA13,38) is an articulate, 
coherent and productive framework to 
integrate data and theory across different 
branches of cognitive psychology. To make 
that case, we review a shortlist of successful 
applications of an integrated mechanistic 
framework to memory, language and 
associative learning. We conclude that 
instance theory is a capable and powerful 
organizing framework to guide cognitive 
research that can advance modern pursuits 
in big data and cognitive neuroscience.

Instance theory
Instance theory is a theoretical perspective 
that assumes memory is a single system that 
records specific events, or instances. When 
a retrieval cue (or probe) is presented (such 
as a word or picture), the cue interacts with 
stored information to create the memory 
of a previously experienced event. Unlike 
multiple system accounts of memory, 
general knowledge (such as category and 
conceptual knowledge) is not represented 
directly in a semantic memory system but, 
rather, emerges from episodic memory 
during retrieval39–41.

There are several computational instance 
models that serve as formal instantiations 
of instance theory. The context model7, 
resonance theory42 and MINERVA13,43,44 
were amongst the first. However, the list has 
grown to include the generalized context 
model20,45,46, the exemplar-​based random 
walk model23, instance theory of attention 

albeit for increasingly specific laboratory 
behaviours. However, cognitive psychology 
has become a collection of disconnected 
explanations for behaviours in particular 
laboratory experiments. The strategic 
division of problems has been reified and 
the description and understanding of 
cognition had become something akin to a 
boutique Swiss army knife — a collection of 
independently useful tools grown too fat to 
fit into anyone’s pocket.

However, a countermovement has 
proposed integration over division. For 
example, Newell famously argued that 
psychology had been seduced into playing 
a losing game with nature, not unlike 
the parlour game ‘Twenty Questions’2. 
He suggested that researchers had grown 
accustomed to testing increasingly fine binary 
oppositions, operating under the illusion 
that the strategy would eventually whittle 
nature down to an indivisible truth. Newell 
pointed out that the strategy was flawed 
and recommended that the field take on the 
productive (albeit more difficult) problem of 
building an integrative and computationally 
articulate theory of cognition — the hallmark 
of a mature science. Unfortunately, Newell’s 
warning has been largely ignored and the 
divisionist strategy remains in place1,12.
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and memory21,22, the knowledge model24,25, 
the retrieving effectively from memory 
model16 and the MINERVA family  
of models (that we refer to collectively as 
MINERVA in the remainder of this  
Perspective)26,27,30,31,33,35,36,47. Although 
these models differ in their computational 
details, they all share the perspective that 
memory records specific experiences and 
that general knowledge emerges ‘on the fly’ 
during retrieval from that store of specific 
experience.

MINERVA is an instance model that 
articulates representation, storage and 
retrieval from memory (Fig. 1). According 
to the model, each experience is stored to 
memory as a unique trace. Presenting a 
retrieval cue causes each trace to become 
activated in proportion to its similarity to 
the cue (the word ‘doctor’ activates memory 
of having studied the word ‘nurse’ more 
than it activates memory of having studied 
the word ‘dog’), and retrieval produces a 
weighted sum of the activated memory 
traces, known as the echo. Because traces 
record all events of a trial and whole traces 
are retrieved from memory, a retrieval 
cue also retrieves memory for events it 
has co-​occurred with in the past; this 
is how the model simulates cued recall, 
associative learning and categorization. The 
information in the echo is assessed relative 
to the question at hand. In recognition, 
a retrieval cue that successfully retrieves 

itself (assessed by comparing the echo 
with the retrieval probe) is considered to 
be recognized. In semantic word meaning, 
the echo that is retrieved stands for the 
word’s meaning. In associative learning, 
the echo that a cue retrieves is assessed 
for the presence of an associate. Although 
we focus our narrative on MINERVA 
owing to its particularly broad history 
of application13,26,27,31–36,38,43,44,48–62, we will 
highlight where other instance models 
converge to reinforce our principal thesis 
that instance theory broadly is a coherent 
general framework for integrating and 
understanding cognition.

Memory and categorization
Instance theory was created to challenge 
the assertion that memory is divided into 
distinct episodic and semantic memory 
systems. Although there are many examples 
in that debate, we focus on the examples of 
prototype abstraction, the Deese–Roediger–
McDermott (DRM) false memory effect, 
and dissociations of episodic and semantic 
memory in amnesia.

Prototype abstraction. In a prototype 
abstraction task, participants study category 
exemplars that are derived as random 
perturbations of an unpresented prototype 
(for example, dot patterns). At test, people 
are best at categorizing exemplars that they 
studied but are also better at categorizing the 

unstudied prototype than novel unstudied 
exemplars. Following a long delay between 
study and test, better categorization of the 
unstudied prototype (compared with novel 
unstudied exemplars) grows even stronger. 
Based on these results, it has been argued 
that people abstract and store the prototype 
in semantic memory, using it to support 
categorization judgements. It is further 
assumed that specific memories of studied 
items in episodic memory are forgotten faster 
than information in semantic memory63,64.

Although people’s judgements in the 
prototype abstraction task are consistent 
with semantic abstraction and a division of 
memory into separate episodic and semantic 
systems, the data pattern is also consistent 
with a single memory system account. 
According to instance theory, people encode 
category exemplars presented at study into 
a single memory store. At test, they judge 
each item based on its aggregate similarity to 
the stored category exemplars. Thus, people 
categorize studied exemplars as best, the 
unstudied prototype second-​best (owing 
to its partial similarity to each item in the 
study list) and new items worst. Because 
forgetting over a study–test delay causes 
items in memory to grow increasingly 
average (less distinct from each other), 
instance theory predicts that following a 
delay, people’s categorization of the items 
they studied should weaken and their 
categorization of the unpresented prototype 
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Fig. 1 | The MINERVA model of memory. a | Series of item traces  
(1 through m) stored to a memory matrix. Each item is represented as a row 
vector with each feature having a value of 1 or −1. b | Memory for items 
after forgetting (zeroes replace some of the elements). c | The retrieval cue 
(probe) activates each trace in proportion to its similarity to the cue.  
ai values indicate activation of each trace in memory. Activation is com-
puted as the normalized dot product of a probe and trace, raised to expo-
nent 3. Activation values range between −1 and 1; 1 indicates probe and 

trace are identical, 0 indicates they are orthogonal and −1 indicates they 
are opposite. Thus, trace m with am = 0.78 is very similar to the probe, 
whereas trace 1 with a1 = 0.01 is nearly orthogonal. Information retrieved 
from memory is called the echo and is an activation-​weighted sum of 
traces in memory, where each trace contributes to that sum in proportion 
to its activation by the probe (ai × ti). Thus, traces most similar to the 
retrieval cue (those with higher activation values) are represented more 
prominently in the echo.
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should remain stable or even strengthen 
(Fig. 2). Simulations with MINERVA confirm 
this explanation13,44,57, as do simulations 
with other instance models including the 
context model, the generalized context 
model and the exemplar-​based random 
walk model7,23,65.

DRM false memory effect. The DRM false 
memory effect represents a linguistic twist 
on prototype abstraction66,67. This effect is 
observed when people falsely recognize a 
critical unstudied word such as ‘sleep’ that is 
associated with a thematically related study 
list such as ‘rest’, ‘bed’, ‘nap’ and ‘blanket’. The 
dual-​process explanation for the DRM effect 

is that people encode the studied words in 
episodic memory and encode an abstracted 
representation of the list’s gist (its average 
meaning) in semantic memory68. At test, 
people correctly recognize the studied items 
based on their similarity to the studied 
items in episodic memory and false alarm 
to the critical word based on its match to 
the gist stored in semantic memory — a 
phenomenon interpreted more generally as 
a false memory effect.

By contrast, according to instance 
theory, people encode each studied word in 
episodic memory. At test, people recognize 
studied items based on a specific match 
to representations in memory. On this 

account, people misrecognize a critical 
unstudied word (‘sleep’) not owing to a gist 
stored in semantic memory but because of 
its combined partial match to all items in 
memory (‘rest’, ‘bed’, ‘nap’ and ‘blanket’). 
This line of reasoning has been confirmed 
in simulations with MINERVA50,69,70, 
confirming that instance theory predicts the 
DRM false memory effect without requiring 
a separate semantic memory system. There 
are several related false memory effects, such 
as false memory for inferences that people 
make while reading71,72 and schema effects73, 
that can also be explained in the same 
manner, within a single system account of 
memory.
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Fig. 2 | ‘on the fly’ memory retrieval in MINERVA. According to instance 
theory, humans store specific experiences (instances) but not general 
knowledge in memory. Consider how retrieval is implemented in 
MINERVA13. a | Representations for a category prototype and five category 
exemplars derived from the prototype. b | These five exemplars stored to a 
memory matrix with some information loss (some values turned to 0).  
c | Novel test probe not in the study list but also a category exemplar.  
d | Memory matrix where each trace is activated by its similarity to the novel 

probe (item 5 is activated most strongly). e | Echo retrieved by the test probe 
and normalized version of the echo. f | Category prototype, novel test  
probe and normalized echo presented as bar graphs. The novel test exem-
plar retrieves an echo that resembles the category prototype. In fact,  
the echo is more similar to the category prototype than to the novel test 
probe. This example demonstrates how MINERVA retrieves a category pro-
totype ‘on the fly’ from memory of studied category exemplars, even when 
the prototype is not directly represented in memory.
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Memory dissociations. Data from 
memory impairment provide another 
source of evidence for the purported 
semantic–episodic memory distinction. 
Individuals with amnesia display more 
severe impairments on episodic memory 
tasks (recognition) than semantic 
memory tasks (categorization)74,75. Based 
on that dissociation, it has been argued that 
amnesia reflects a selective impairment to 
a distinct episodic memory system without 
corresponding impairment to a distinct 
semantic memory system. However, a 
growing body of evidence has begun to 
question this view76–78. As an example, 
consider a now classic experiment testing 
the dissociation between categorization and 
recognition74. In the experiment, individuals 
with amnesia and control participants 
studied dot patterns derived from a 
prototype (as in the prototype abstraction 
task). Following study, they performed 
categorization and recognition tasks for 
studied and unstudied patterns. Whereas the 
individuals with amnesia performed as well 
as control participants at categorization, they 
performed worse than control participants 
at recognition. To explain the dissociation, 
a dual systems theory assumes that amnesia 

represents impaired episodic memory 
coupled with spared semantic memory.

This result seems to contradict 
an instance view: if recognition and 
categorization are both based upon memory 
of studied exemplars, then forgetting the 
exemplars should impair both categorization 
and recognition equally. However, the 
pattern can be successfully simulated 
with instance theory. As with prototype 
abstraction and the DRM effect, poor 
memory of the exemplars renders them 
increasingly average (less distinct). This 
change makes the items in memory more 
difficult to distinguish from one another, 
reducing successful recognition of specific 
studied items without reducing successful 
categorization of items that are similar to 
the studied set. Thus, if amnesia results 
in poor memory for studied exemplars, 
instance theory predicts a far more severe 
impairment in recognition of the studied 
exemplars than categorization. This 
prediction and related predictions have been 
confirmed using several instance models 
including MINERVA49,57,79,80, the general 
context model65,81–83, the neural exemplar 
theory84 and the retrieving effectively from 
memory model85 (Box 1).

Taken together, our discussion of 
prototype abstraction, the DRM effect and 
amnesia demonstrates that instance theory 
can re-​explain so-​called semantic memory 
effects as emergent artefacts of retrieval 
from episodic memory. Thus, phenomena 
traditionally thought to require a theoretical 
division of memory into separate episodic 
and semantic systems can, instead, be 
understood as reflecting a common set of 
cognitive representations, principles, and 
operations in a single memory system.

Language
The study of language has long been 
dominated by the nativist or universalist 
perspective that language is a specialized 
system operating independently from 
general cognition86. However, that 
perspective has been challenged by usage- 
based accounts that language emerges as an 
interaction of general cognitive functions 
and the language environment8. Instance 
theory has served as a formal framework 
to test the usage-​based hypothesis, in the 
domains of word meaning and speech 
normalization30,54,87,88.

Word meaning. Virtually all accounts of 
word meaning in semantic memory assume 
that a word’s meaning is represented by 
a lexical entry averaging over its history 
of use89. Consistent with this prototype 
perspective, computational accounts of 
semantic memory such as word2vec (ref.90) 
or BEAGLE29 encode a word’s meaning 
as a single vector that averages over the 
word’s usage in printed text28,29,90–92. Once 
computed, these stored lexical vectors 
(prototypes) in semantic memory accurately 
predict people’s judgements about word 
meanings93–96. However, these explanations 
require a special abstraction process 
across each word’s history and a division 
of memory into separate semantic and 
episodic systems.

Two instance-​based models of ‘semantic 
memory’ have been developed within the 
MINERVA framework: the instance theory 
of semantics30 and its predecessor, the 
constructed semantics model31. In these 
models, individual language experiences 
are encoded as traces in episodic memory 
and word meanings are constructed during 
retrieval as the echo computed from the 
episodic store. In the instance theory of 
semantics, each word is represented by a 
unique vector and each language experience 
(for example, a paragraph in a newspaper) 
is represented as a sum of vectors that 
correspond to the words in the experience. 
When a word is presented as a retrieval cue 

Box 1 | Modelling the nature of encoding difficulties in amnesia

In several experiments, humans’ memory for presented words was tested following administration 
of midazolam — a drug used to induce transient amnesia during surgery — versus a control 
condition. Over those studies, the order of drug versus control administration was randomized  
so that some participants were tested under the drug condition before the control, and vice versa 
(see the figure). Each participant completed both the drug and saline conditions to ensure a high 
precision and within-​subject measurement of the drug effect157–161.

These experiments revealed several dissociations in recognition memory performance between the 
induced amnestic state and the control condition. Notably, a reversal of the standard recognition 
advantage for low-​frequency relative to high-​frequency words was found, which was interpreted as 
evidence for a dual-​process account of recognition memory162. However, work using the retrieving 
effectively from memory model demonstrated that this reversal is also consistent with a single- 
process instance theory16,85. According to the analysis and consistent with explanations of memory 
dissociations with the MINERVA and generalized context models49,57,81, midazolam decreases the 
accuracy with which memory traces are stored.

The retrieving effectively from memory model is unique among instance models in that it includes 
two encoding parameters. One parameter controls the probability of encoding features to memory. 
The other controls the probability of encoding a feature correctly, given that it is encoded. Based on  
a simulation analysis, the authors concluded that performance under midazolam is consistent with 
noisier rather than less encoding of study items85. The distinction between encoding and encoding 
correctly is important for understanding how amnesia impacts memory, enabling a more precise 
understanding of how human memory operates. This understanding, in turn, can inform the design  
of behavioural treatments and strategies that people with amnesia can use to compensate for and 
ameliorate their memory difficulties.

Midazolam
administration

Session 1

Study words Memory test
Study–test delay

Saline
administration

Counterbalanced

Session 2

Study words Memory test
Study–test delay

www.nature.com/nrpsychol

P e r s p e c t i v e s



0123456789();: 

to memory, it activates each memory trace, 
and the weighted sum of the traces — the 
echo — stands for the word’s meaning.

Because word meanings are constructed 
during retrieval each time a word is 
encountered, instance models naturally 
disambiguate the intended meaning 
of homonyms in context because the 
activated traces in memory are those most 
similar to the current context. By contrast, 
prototype models collapse all distinct 
meanings of a word into a single aggregate 
representation — a scenario that challenges 
disambiguation of competing meanings. 
For example, prototype models often have 
difficulty switching between the frequent 
meaning of ‘bank’ cued by the sentence 
‘I withdrew money from the bank’ to one 
of its less frequent meanings as indicated 
in the sentence ‘I canoed to the bank’97, 
although there has been recent progress 
on the disambiguation of word meaning 
in these models98. Instance theory finesses 
the problem by constructing the meaning 
for ‘bank’ from differential activation of 
exemplars that best match how it is being 
used in the moment30,59,89.

Despite the differences in how prototype 
models and instance models arrive at 
word meanings, whether prospectively by 
prototype abstraction or retrospectively 
by memory retrieval, they arrive at similar 
conclusions regarding word meaning. 
However, despite arriving at similar 
conclusions (Fig. 3), the instance theory 
of semantics provides an existence proof 
that a separate semantic abstraction 
process coupled with storage in a separate 
semantic memory system is unnecessary 

to understand how people know word 
meanings. This model provides the kind 
of computational framework that is needed 
to bring the reconsideration of separate 
episodic and semantic memory systems into 
clear analytic focus.

Speech normalization. Speech is a noisy 
signal; each utterance bears idiosyncrasies 
due to speaker variability, prosody and 
regional accent99. For example, ‘about’ and 
‘sorry’ are pronounced differently when 
spoken by someone with a Canadian 
versus an American accent. Yet people 
are remarkably adept at recognizing and 
comprehending spoken words despite these 
variations.

According to the standard view, speech 
variability is solved by an early perceptual 
process that recognizes spoken words and 
normalizes them for use in retrieval from 
semantic memory100,101. However, such a 
normalization process conflicts with the 
fact that people’s memory performance 
is impacted by differences in word 
pronunciation between study and test lists. 
For example, people recognize studied 
words less well when different people speak 
those words at study versus test, suggesting 
that memory for spoken words retains their 
auditory details51,102,103.

By contrast to semantic memory 
theories, instance theory proposes 
that speech is remembered without 
undergoing normalization and that speech 
normalization is a side effect of retrieval 
from episodic memory. According to 
this account, memory traces of prior 
speech experiences retain their auditory 

idiosyncrasies such as speaker identity and 
accent. When a new speech utterance is 
heard, it activates memory of all similar 
speech instances and a weighted average 
of the activated memory traces is retrieved. 
Because the information retrieved is 
a weighted average, that information 
emphasizes features that are shared by 
the activated traces and washes out their 
differences. By that process, presenting a 
word retrieves its normalized form.

Simulations with MINERVA demon-
strated that an instance model accounts for 
people’s behaviour in speech shadowing and 
speech recognition experiments32. Follow-​up 
work demonstrated that the model also 
accounts for complicated patterns in lexical 
decision (deciding whether an utterance is 
a real or made-​up word)59. In contrast to 
the view that speech normalization is an 
early perceptual process, the instance view 
explains normalization as a corollary of 
an instance-​based retrieval process.

Instance theory provides a coherent 
explanation of (at least) some aspects of 
language cognition. We have focused on 
word meaning and speech normalization 
but instance theory has also been applied to 
other language problems including sentence 
production51, statistical learning104 and 
implicit learning of grammatical structure 
(Box 2). Based on those demonstrations, 
and consistent with the usage-​based 
account of language8, this work strongly 
suggests that language perception and 
comprehension can be understood as an 
interaction between language experience 
and an instance-​based approach to memory.

Learning
Associative learning refers to the study of 
the basic cognitive processes that govern 
behaviour of human and non-​human 
animals. Yet models of associative learning 
and models of memory have been 
developed independently. Instance theory 
has had an important role in a productive 
reintegration of data and theory in the two 
domains10,33,34,37,105,106.

Associative learning. In a simple associative 
learning procedure, a cue (such as an 
auditory tone) is presented followed by 
an outcome (such as food). With experience, 
presentation of the cue elicits behavioural 
anticipation of the outcome (such as 
salivation or a lever press); subsequent 
presentation of the cue in the absence of the 
outcome produces extinction (weakening) of 
the learned anticipation. The wax and wane 
of cue-​driven anticipation is associative 
learning.

Environment Memory Behaviour
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Text corpus Semantic 
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Relatedness
judgements

RetrievalAbstraction

Reinforcement
learning

Vector cosine

word2vec

Text corpus Instance
memory

Relatedness
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AbstractionEncoding
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Fig. 3 | storage versus retrieval accounts of semantic memory in language. The generally accepted 
schematic of memory consists of encoding, storage and retrieval. By contrast, instance theory of 
semantics30 and the popular word2vec model90 learn from a text corpus and can accurately simulate 
semantic relatedness judgements. word2vec does so by abstracting a representation for later retrieval; 
it posits semantic abstraction at encoding and storage of a single semantic representation per word. 
Instance theory of semantics simulates relatedness judgements by retrieving representations as 
needed. Instance theory of semantics has no semantic memory — the behaviour that makes it appear 
that it has semantic memory emerges from the retrieval process.
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Associative learning has traditionally 
been modelled as a current summary of 
associative strengths between cues and 
outcomes. These representations are 
represented as current summaries over an 
entire learning history and independent 
of the learner’s memory for the individual 
trials that contributed to the current 
summary107. However, the position that an 
association is represented separately and 
independently from memories of individual 
learning trials is difficult to reconcile with 
the body of evidence that animals, human 
and non-​human, have an impressive ability 
to remember the events of individual 
learning trials108–116.

By contrast to classical learning theories, 
instance theory identifies the individual 
experience — the instance — as the 
primitive unit of knowledge and models 
associative learning as the storage and 
retrieval of instances from memory. From 
that perspective, association is a corollary 
of retrieval from memory rather than a 
summary over the learning history. To test 
instance theory in this context, MINERVA 

was applied to associative learning 
protocols33,34. The theory was augmented 
to account for the fact that animals encode 
unanticipated and, therefore, surprising 
events more strongly than anticipated events 
(surprise-​driven encoding)117,118. With 
surprise-​driven encoding, MINERVA 
predicted a broad range of associative 
learning phenomena.

The most compelling demonstration 
of the power of instance models is an 
explanation of retrospective revaluation 
— a learning phenomenon that evades 
easy explanation by classical theories of 
associative learning119–122. In retrospective 
revaluation, participants might learn, for 
example, that apples and bananas together 
cause an allergic reaction. Accordingly, the 
learner might conclude that apples and 
bananas are equally responsible for the 
reaction. However, if they later learn that 
apples alone cause the allergic reaction, 
they might update their assertion that only 
apples cause the allergy and, therefore, 
bananas do not. This phenomenon requires 
memory of prior trials to retrospectively 

revaluate associations and assertions in light 
of new information. MINERVA enables 
retrospection as a natural outcome of being  
a memory theory because remembering 
prior events supports the capacity to 
rethink their relationships to the outcome. 
By contrast, classical learning theories 
require ad hoc assumptions to enable 
appropriate retrospective revaluation in the 
absence of memory for prior trials122,123.

Evaluative conditioning. Evaluative 
conditioning is an example of associative 
learning that denotes how a person’s attitude 
changes towards a conditioned stimulus 
based on its pairing with an emotionally 
valenced unconditioned stimulus124,125. 
For example, seeing a company logo paired 
with a smiling actor may lead to more 
positive evaluations of the logo. Evaluative 
conditioning has attracted a good deal of 
applied interest in relation to advertising 
and advertising ethics126. However, it has 
also attracted interest as a theoretical 
conundrum.

According to classical associative 
learning theory, a person’s learned reaction 
to a conditioned stimulus is really a 
reaction to its anticipated unconditioned 
stimulus. Thus, if the conditioned stimulus–
unconditioned stimulus association 
is extinguished, it is expected that the 
conditioned stimulus should cease to 
elicit the reaction. However, evaluative 
conditioning represents a situation in which 
the reaction to the conditioned stimulus 
persists even after the conditioned stimulus–
unconditioned stimulus relationship is 
extinguished. Based on the persistence of 
evaluative conditioning despite extinction 
of the conditioned stimulus–unconditioned 
stimulus association, it has been argued that 
evaluative conditioning represents a special 
form of associative learning.

Evaluative conditioning can also 
be explained within a single system 
instance-​based account. According to 
the instance theory explanation, people’s 
reaction to a conditioned stimulus reflects 
retrieval of memories from both the acqui-
sition and extinction phases of an evaluative 
conditioning experiment whereas their 
reaction to an unconditioned stimulus 
reflects retrieval from the more recent 
extinction phase. In a simulation with 
MINERVA, memory for a trial included 
a contextual time stamp that distinguished 
when the trial was encountered; during 
either the acquisition or the extinction 
phase of the training protocol35,36. At test, 
the context was included as part of the 
probe so the model retrieved selectively 

Box 2 | Implicit learning of grammatical structure

Researchers have used the 
artificial-grammar task to examine 
the phenomenon that humans 
learn the regularities in their 
environment without explicit 
intent40,163,164. In this task, participants 
memorize letter strings constructed 
according to the rules of an artificial 
grammar that specifies which letters 
can follow one another from left to 
right. A grammatical stimulus is 
generated by starting at the leftmost node of a grammar (marked S1 in the figure) and following  
the paths (indicated by arrows) until reaching the exit node marked S7. Following the grammar in the 
figure, participants might be asked to memorize the strings CTPC, TZVTPC, XZTPPPPC and CTC.  
In a test phase, they are told the strings they just memorized were constructed according to rules  
of an artificial grammar and they are invited to discriminate unstudied grammatical strings (such as 
CTPPPC and TZVP) from unstudied and ungrammatical strings (such as VTTTPX and TZVZTPC). 
Although participants can discriminate the two kinds of items above chance, they cannot describe 
the underlying grammar.

The standard account of performance in artificial-​grammar learning tasks is that a specialized 
implicit learning system abstracts the grammar during study and applies that knowledge at test. 
Because participants cannot describe the grammar, it is assumed that the knowledge and use of the 
grammar is unconscious. By contrast, instance theory proposes that performance can be explained 
without invoking a specialized system. MINERVA was applied to the artificial-​grammar task by 
encoding study strings to memory and then judging test strings based on how well they can be 
reconstructed during retrieval52. The model distinguished grammatical from ungrammatical test 
strings without knowing the grammar — just as humans can. The model’s ability to perform 
discrimination follows from the natural correlation between the form and amount of structure in  
an instance produced from a grammar165, and the structure of the grammar itself combined with  
the fact that the information retrieved from memory aggregates over the individual items.

Thus, performance in the artificial-​grammar task can be understood using the same principles and 
mechanisms that have long been used to understand retrieval from episodic memory. Although we 
have highlighted the use of MINERVA in this domain, other researchers have used the generalized 
context model to make the same point166. The convergence on a common conclusion using different 
instance models reinforces our principal thesis that instance theory, in general, can explain examples 
of implicit language learning166.
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from one or both of the training phases127. 
Given this context-​selective retrieval, 
MINERVA captured the persistence of eval-
uative conditioning following extinction of  
the conditioned stimulus–unconditioned 
stimulus association106. Thus, if one 
acknowledges context-sensitive retrieval 
from memory differences in the evaluations  
of the conditioned stimulus relative to the  
conditioned stimulus–unconditioned 
stimulus association, expectancy can be 
understood as reflecting different context- 
sensitive summaries of the same learning 
history128,129. Accordingly, the difference 
does not require different learning processes 
for evaluative conditioning and associative 
learning10,105.

These examples demonstrate that 
instance theory captures multiple examples 
of associative learning and presents a 
promising avenue for investigating learning 
behaviour in both human and non-human 
animals. Instance theory therefore supports 
an integrated understanding of the 
mechanisms that support learning 
and memory.

Conclusion
Instance theory is a coherent approach 
to understanding cognition. It shifts the 
complexity of memory from encoding to 
retrieval such that cognitive complexity 
does not reflect a battery of sophisticated 
encoding mechanisms but, instead, emerges 
as a corollary of constructive retrieval 
from episodic memory. In focusing on 
memory, language and learning, we have 
not discussed applications of instance 
theory in other domains such as attention21,22, 
action and procedural memory24,25, 
decision-​making26,27,41, choice reaction 
time23,53 and implicit learning40,52,56. To the 
extent that a single system perspective 
is successful, the need for multiple 
parallel theories to explain these different 
phenomena can be scrutinized as theoretical 
overreach.

The success of instance theory as an 
integrative explanation across domains 
shows that single system accounts are 
tenable. Thus, researchers should consider 
the necessity and veracity of a multiple 
system account of memory. Whether 
instance theory turns out to be the best 
integrative theory of cognition, the 
continued effort to test the necessity of 
divisions moves cognitive psychology 
towards true explanations for cognition. 
Instance theory can provide a governing 
framework to unify an understanding 
of human behaviour and motivate new 
experimental work and discoveries.

Instance models are often criticized for 
explaining cognition at the computational 
and algorithmic levels but not at the 
implementational (neuroscientific) level130. 
That distinction points out two clear avenues 
for research on instance theory. The first is to 
rewrite instance models in implementational 
terms. Such a project would serve to express 
instance theory in a common language to 
facilitate a more fluid exchange of data and 
ideas between psychology and cognitive 
neuroscience. A second, related avenue 
for future research is to rewrite instance 
models to be more computationally efficient. 
Whereas instance theory assumes that 
memory stores all individual experiences 
and that retrieval integrates over that entire 
history, implemented instance models 
must deal with the practical problem of 
exploding simulation times that grow 
with the number of instances in memory. 
Thus, if researchers want to apply instance 
models to big data problems such as 
language, it will be necessary to acknowledge 
and face the pragmatic complication of 
balancing computational efficiency and 
implementational form. Re-​expressing 
instance models in terms of distributed 
representations would both deal with the 
computational efficiency of computing 
predictions and also resolve the tension 
between theoretically infinite memory 
and the capacity limits of the substrate 
in which memory resides. Promising 
frameworks for this programme include 
implementation-​level instantiations of 
instance theory such as holographic 
representation131–135, artificial neural 
networks48,136–138 and the neural exemplar 
theory84.

Instance theories take an extreme 
position by explaining all aspects of 
cognition without recourse to other forms 
of processing. As a result, they fall short of 
straightforward explanations for some 
classes of behaviour such as rule-​based 
categorization. To bridge the gap, some 
researchers have constructed hybrid 
models that include an instance-​based 
system operating in parallel with other 
forms of cognition, such as a rule-​based 
classification system that discriminates 
category members according to one or more 
verbal if–then strategies139–142. Although 
these hybrid systems solve problems that 
instance theories have trouble negotiating, 
an interesting programme of research is to 
integrate the idea of rules and procedures 
of mind into an instance framework. 
For example, rules or processing operations 
might be stored into memories and enacted 
once retrieved. Doing so opens up questions 

and possibilities about how memories for 
actions and procedures might be represented 
within instance models to support storage 
and retrieval of behaviours, not just 
information. That idea would be consistent 
with skill and action-​based work in instance 
theory24,25,143 as well as Kolers’ procedures 
of mind framework for cognition where 
memories encode procedures for behaviour 
rather than a record of stimulation144. 
Rosenbaum and colleagues’ instance-​based 
knowledge model provides a strong map 
to pursuing how instance models might be 
rewritten to predict how instance-​based 
retrieval drives action.

Given the availability of large databases  
of text and image data, scaling up instance  
models to complicated and real-world 
domains is another promising and 
productive avenue for investigation. 
Pursuing that goal would present instance 
theory as a competitor framework in 
the domain of cognitive computing and 
applied cognitive science to modern 
and emerging technological perspectives on 
the design of cognitive systems145. As noted 
elsewhere146,147, simple processes applied 
to complex data can yield surprisingly 
sophisticated cognitive behaviour. It should 
be an aim of ongoing research to investigate 
the scope and depth of sophistication that 
might emerge in the practice of applying 
instance models to big data sources.

We have focused, in large part, on 
explaining how instance theory provides an 
explanation of cognition over established 
examples of behaviour in cognitive 
psychology. However, whereas instance 
theory’s success at postdicting what is 
already known is an important step, 
theories should also present opportunities 
for discovery. Instance theory might be 
profitably applied in this regard to the 
domain of ecological cognition148,149. 
This domain explores how people arrive at 
intuitive inferences and decisions that are 
irrational relative to prescriptive accounts 
of decision, yet rational relative to the 
ecology of the behavioural environment. 
This distinction has been explained by 
assuming that decision-​making is tuned 
to a correspondence rather than coherence 
criterion150. Instance theory is an ideal 
framework for understanding the distinction 
between normative and descriptive accounts 
of decision-​making, where it has already 
been applied to heuristics and normative 
reasoning26,27,151. Further applications of 
instance theory can be used to understand 
why people arrive at the illogical but 
well-​structured and adaptive decisions that 
they do. For example, the instance theory 
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of associative learning predicts people’s 
decisions in reasoning experiments26,27. We 
are excited to examine this problem moving 
forward by integrating basic mechanisms 
of associative learning and memory with 
decision-​making and intuitive inference.

We have focused on examples of instance 
theory using the MINERVA model. However, 
we could have built the same case using other 
instance models such as the generalized 
context model or the retrieving effectively 
from memory model. Also, whereas instance 
theories agree in principle, instance models 
differ in some meaningful ways. For example, 
the generalized context model represents 
stimuli using multidimensional scaling152,153, 
the feature model incorporates assumptions 
about perceptual representation15, the 
retrieving effectively from memory 
model uses Bayes’ theorem to integrate the 
influence of expectation on memory16,151 
and the rule-​plus-​exception model provides 
a way to integrate exemplar theory with 
rule-​based processes139,140,154. Thus, although 
testing and comparing different instance 
models is a productive strategy, it would 
also be profitable to consolidate different 
instance models. One route might involve 
deriving a single nested model to identify 
and sort through the assumptions and 
mechanisms that the models do and do 
not share135,155. Another route is to create 
a hybrid model that retains the differences 
between the various models and conduct 
an analysis of that hybrid model to identify 
and distinguish necessary from merely 
useful assumptions and mechanisms of 
the various instance models139,141. Despite 
uncertainties in how instance theory might 
be implemented in a shared programme, 
there is value in committing to a shared 
model that coordinates a mature, integrative 
and cumulative research programme1,156.
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