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Abstract
To account for natural variability in cognitive processing, it is standard practice to optimize a model’s parameters by fitting it to
behavioral data. Although most language-related theories acknowledge a large role for experience in language processing,
variability reflecting that knowledge is usually ignored when evaluating a model’s fit to representative data. We fit
language-based behavioral data using experiential optimization, a method that optimizes the materials that a model is given
while retaining the learning and processing mechanisms of standard practice. Rather than using default materials, experiential
optimization selects the optimal linguistic sources to create a memory representation that maximizes task performance. We
demonstrate performance on multiple benchmark tasks by optimizing the experience on which a model’s representation is based.
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Cognitive models specify constructs, such as a decision crite-
rion or encoding probability, that are controlled with free pa-
rameters (Shiffrin, 2010). The parameters’ values are deter-
mined by adjusting them systematically to minimize the dis-
crepancy between the model’s output and behavioral data; that
is, by fitting the model to data. The idea is to give the model its
Bbest shot^ at accounting for the behavior in question, and
there are many increasingly sophisticated algorithms with
which to fit a model’s parameters (e.g., Myung, Cavagnaro,
& Pitt, 2017; Shiffrin, Lee, Kim, & Wagenmakers, 2008).

A tacit assumption in cognitive modeling is that behavioral
differences across individuals, or tasks, can be explained in
terms of processes controlled by the fitted parameters. But an
important source of variance comes from differences between
individuals’ memory, independently of the processes con-
trolled by the fitted parameters. As Hummel and Holyoak
(2003) note, BAll models are sensitive to their representations,
so the choice of representation is among the most powerful
wild cards at the modeller’s disposal^ (p. 247). Everyone has

had different experiences with the world, leading to variability
in people’s memorial representations.

The assumption that aspects of the external world are
stored internally is almost universal; it appears in theories of
memory (Anderson & Schooler, 1991), of perception
(Barsalou, 1999; Shepard & Metzler, 1971), and of language
processing (Landauer & Dumais, 1997; Tomasello, 2003). In
effect, the assumption acknowledges that humans are embed-
ded in a structured environment that constrains behavior be-
cause it informs learning.

Early on in cognitive modeling, Estes (1955) urged the
field to shift Bthe burden of explanation from hypothesized
processes in the organism to statistical properties of envi-
ronmental events^ (p. 145). Simon (1969) expanded on
Estes’s call, emphasizing that the Bapparent complexity
of our behavior over time is largely a reflection of the
complexity of the environment in which we find
ourselves^ (p. 53).

Simon (1969) describes a simple parable on the importance
of the external environment in understanding behavior: He
describes the difficulty of ascribing internal processing mech-
anisms to an ant’s path on a beach. Although the path that the
ant takes may seem complicated from a birds-eye view, the
complexity is likely a reaction to obstacles in its way. If one
were to examine the ant’s path without regard for its environ-
ment, one might be motivated to ascribe sophisticated internal
mechanisms to the ant instead of acknowledging that the ant is
a simple organism reacting to a complex environment. If dif-
ferent paths are taken by different ants, it is possible that they
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have different internal process rules; however, it is more plau-
sible that they have identical process rules, but were started at
different points on the beach and hence encountered different
environmental regularities.

The parable of the ant on the beach applies broadly to
theories of cognition (Estes 1975), and to language in partic-
ular. For example, theories of word recognition and retrieval
(e.g., Goldinger, 1998; Murray & Forster, 2004; Norris, 2006)
use a word’s frequency of occurrence as a central organizing
principle to acknowledge that words that occur more frequent-
ly are processed more efficiently (Broadbent, 1967; Brysbaert
& New, 2009; Forster & Chambers, 1973). Similarly, distri-
butional models of semantic memory propose that knowledge
of what words mean can be inferred by how words are used in
language, abstracted across large text corpora (Griffiths,
Steyvers, & Tenenbaum, 2007; Jones & Mewhort, 2007;
Landauer & Dumais, 1997). Exposure to different patterns
of linguistic information is often used as an explanatory vari-
able to account for behavioral differences inmemory (Johns&
Jones, 2010; Johns, Jones, & Mewhort, 2012; Mewhort,
Shabahang, & Franklin, 2017; Nelson & Shiffrin, 2013), bi-
lingualism (Gollan, Montoya, Cera, & Sandoval, 2008; Johns,
Sheppard, Jones, & Taler, 2016; Taler, Johns, Young,
Sheppard, & Jones, 2013), in syntactic processing (Johns &
Jones, 2015; Reali & Christiansen, 2007; Wells, Christiansen,
Race, Acheson, & MacDonald, 2009), language acquisition
(Abbot-Smith & Tomasello, 2006; Bannard, Lieven, &
Tomasello, 2008; Tomasello, 2003), and in aging (Ramscar,
Hendrix, Shaoul, Milin, & Baayen, 2014; Ramscar, Sun,
Hendrix, & Baayen, 2017).

In this article, we explore how to integrate a person’s envi-
ronmental information into a process for maximizing a
model’s performance on a task. In doing so, we do not wish
to underplay the importance of the processing mechanisms
addressed by standard techniques. Rather, our focus is on
the neglected source of variance; the background knowledge
and experience that subjects bring to tasks, knowledge that
corresponds to the environment in Simon’s (1969) parable of
the ant. We present an existence proof demonstrating that it is
possible to account for differences in performance on cogni-
tive and linguistic tasks in corpus-based models without
changing process parameters, but rather by acknowledging
the learning history.

Subjects differ in what they know, and they recruit different
memories relevant to different tasks; the differences should
prompt a corresponding divergence in behavior.
Accumulated linguistic knowledge should have a larger im-
pact on a lexical-decision experiment than on a perceptual-
identification task. Hence, including linguistic knowledge
when modeling lexical decision makes a good deal of sense.

One way to build linguistic information into a model is to
use a representation of word meaning constructed from a stan-
dard corpus, such as the TASA corpus (first used by Landauer

& Dumais, 1997). TASA is a set of paragraphs from
textbooks, sampled from Grades 1 to 12. The TASA
corpus has been used as the gold standard in tests of
co-occurrence models (e.g., Griffiths et al., 2007; Jones
& Mewhort, 2007; Landauer & Dumais, 1997), and it
has frequently been integrated into processing models in
cognate areas (e.g., Johns & Jones, 2015; Johns et al.,
2012; Mewhort et al., 2017).

Although the TASA corpus is likely representative of the
linguistic experience that many subjects have experienced, it
is not intended to map exactly onto the experiences of specific
individuals. Indeed, subjects likely have experienced wildly
different linguistic sources, depending on culture, geography,
educational system, and so forth. Hence, for any group of
subjects, there is a natural variation in their knowledge—var-
iation that should impact their behavior on specific laboratory
tasks.

A recent distributional analysis by Johns and Jamieson
(2018) illustrates the underlying variability in natural lan-
guage. In their study, a large sample of fiction was organized
by author and genre. There was a small genre effect, where
authors who wrote in the same genre had a small increase in
the similarity of their writings when compared with authors
whowrote in different genres. However, the biggest difference
emerged at the individual-author level: Each author had a
unique signature of language usage. Given that an individual’s
exposure to different texts is influenced by a number of factors
(including demographics and personal preferences), the
author-signature effect suggests that there is a great deal of
variance in the natural language environment.

Standard parameter-fitting techniques capitalize on poten-
tial variability in cognitive processes. Because different lin-
guistic sources contain different information, variability in a
model’s behavior should depend on the experience that a mod-
el incorporates. Just as optimizing a model’s process parame-
ters allows it to have its Bbest shot^ at accounting for particular
behavior, a language-based model should provide a like ad-
vantage given optimized language experience.

To demonstrate the scope of the issue, we will apply our
experiential optimization (EO) approach to several substan-
tive tasks, including lexical semantics, lexical organization,
sentence processing, and false memory. The common thread
among the examples is representational dependency: Each
model incorporates linguistic information into the mental lex-
icon. Our aim is to use EOwithin realistic cognitive models to
produce benchmark accounts of language-based behaviors.

The use of specialized corpora is not without precedent.
For example, Rehder et al. (1998) used a specialized Bheart^
corpus to analyze the essays of medical students. The special-
ized corpus was composed of medical texts, as they contain
more information about human physiology than TASA (where
Bheart^ is more commonly used in a literary sense). Similarly,
Stone, Dennis, and Kwantes (2011) improved performance by
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using a search engine with targeted queries to reduce a large
Wikipedia corpus into subcorpora. Combined, the past work
provides compelling evidence that experiential optimization
can benefit cognitive models. Our goal is to isolate important
parts of the lexical environment and to provide a general meth-
od with which to improve a model’s performance.

Although the procedures outlined here provide a solid
foundation for data fitting, the primary focus of the research
is theoretical, namely, to illustrate the power of variance in
language in accounting for linguistic behaviors. Because
language is an explanatory variable in a wide variety of
theories of cognition (e.g., Gollan et al., 2008; Johns &
Jones, 2015; Johns et al., 2012; Jones & Mewhort, 2007;
Landauer & Dumais, 1997; Ramscar et al. , 2014;
Tomasello, 2003), we need to examine its power. The sim-
ulations reported in this article provide a powerful look into
this problem.

More specifically, we focus on two main aspects of EO: (a)
as a new technique for understanding how variance in knowl-
edge controls human behavior, and (b) as a fitting technology
for optimizing models based on natural language. As stated
previously, the first aspect focuses on optimizing a model’s
experience with language.

The second application of the technique builds upon much
work in the computational cognitive sciences in building cog-
nitively plausible distributional models of natural language
acquisition and processing (Bullinaria & Levy, 2007, 2012;
Griffiths et al., 2007; Jones & Mewhort, 2007; Landauer &
Dumais, 1997; Mikolov, Sutskever, Chen, Corrado, & Dean,
2013; for a review, see Jones, Willits, & Dennis, 2015).
Distributional models have been highly successful at captur-
ing human behavior and at solving applied problems, such as
automated essay grading (see Jones & Dye, 2018). However,
if the applied field is to continue to grow, more attention needs
to be paid to the materials that are used to train its models. EO
provides a promising framework that not only gives a model
its best shot at accounting for a set of human behavior but also
allows it to perform better in applied situations, by ensuring
that the model has the most powerful possible knowledge base
for a given task.

The first section of this article will provide an outline of the
EO methodology. The following four sections will apply EO
to different areas within language and memory processing.
The first two topics explored are representational models of
lexical semantics and lexical organization. Both explore the
power of EO, while not adding additional complexity in the
form of a processing model. These two sections contain the
foundational simulations demonstrating the varied uses of EO
in accounting for behavioral data, including using standard
optimization procedures such as cross-validation. The next
two topics, sentence processing and false memory, have both
a representational and a processing component. The combina-
tion of different topics tests the power that optimizing both

process and representation provides, and are used to demon-
strate the generalizability of EO. The four topics, although not
all encompassing, provide a cross-section of the power of the
EO procedure across varied tasks, cognitive processes, and
data types. Each section of the article has been written to be
relatively self-contained, so the reader can skip a topic if it
does not align with their interests.

Optimization framework and language
sources

To find the optimal linguistic information for a model on a
given task, we started by selecting a wide sample of language
sources. Specifically, we split a large collection of text into
smaller sections, and a searching algorithm iteratively deter-
mined which sections maximized the fit of the model under
consideration. At the end of the sampling process, materials
should be selected that maximizes the model’s performance
on a task, similar to the way parameter fitting provides a mod-
el with its Bbest shot^ to explain data.

Training materials

The texts come from five sources: (a) Wikipedia (Shaoul &
Westbury, 2010), (b) Amazon product descriptions (attained
from McAuley & Leskovec, 2013), (c) 1,000 fiction books,
(d) 1,050 nonfiction books, and (e) 1,500 young-adult books.
All were e-books, and the vast majority were written in the
past 50 years by popular authors. Table 1 shows the charac-
teristics of the different corpora. The fiction and young adult
had relatively shorter sentences than the nonfiction sources
did and hence have fewer total words.

The sources—from an online encyclopedia, to books
targeted at young adults, to marketing materials for a large
range of products—were selected to represent as broad a range
of written language as practicable. It is impossible, of course,
to span the entire range of possible source information, but
these sources represent a substantial range of texts with which
to give EO a fair test.

To equate each corpus’s contribution, each source was
trimmed to six million sentences, for a total of 30 million
sentences across all texts (approximately 450 million words).
The data-fitting method was designed to determine which
texts are the most informative in accounting for a particular
experiment, just as statistical methods are used to estimate the
optimal free parameters of a model.

The corpora were split into small sections. Although there
was some variation in the size of the sections (because some
models relied on sentence information whereas others used
paragraphs or documents), the standard section size was
50,000 sentences. Sections were split within each of the dif-
ferent corpora (so each fiction section consisted of fiction
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books), and each section was composed of whole books (for
the book corpora). That is, sentences were not randomized,
but were kept in their surrounding context. When possible,
books written by the same author were assigned to the same
language sections. Using 50,000 sentence sections, the indi-
vidual corpora were split into 600 different sets across the
corpora (120 sections for each language source).

Although each section was small relative to the total, it was,
nevertheless, a large chunk of language, representing approx-
imately seven-and-a-half fiction novels. Each section was
large enough to measure how much linguistic information
the section contains, but was small enough to allow the differ-
ent sections to be combined into an optimal set. Splitting the
corpora into sections allowed us to capture a wide range of
linguistic backgrounds.

To illustrate the variability of the lexical materials, we used
the BEAGLE model of semantics (Jones & Mewhort, 2007,
described in the next section) to examine the diversity of the
meanings of the words that were acquired from the different
corpora sections. To do so, we used the words from the
Toronto word pool (Friendly, Franklin, Hoffman, & Rubin,
1982), a standard word set often used in studies of memory.
Semantic representations for the words were constructed with
BEAGLE for each of the 600 different sections (that is, 600
sets of different BEAGLE vectors were constructed, leading
to 600 different representations for the same word). The sim-
ilarity of the semantic representations for the same words was
compared across the sections by computing the vector cosine
for each word in the Toronto word pool with its corresponding
representation in every other section. The similarity measures
estimate the variance of meaning for the same word across the
different corpora.

Figure 1 presents the word-to-word similarity distributions
for each corpus. As shown in Fig. 1, different sections of
language provide different meanings for the same word.
Note that no average similarity measure exceeded a value of
0.7, demonstrating that there are large differences in the usage
of words across different samples of language. A human
trained on one section would have a different mental represen-
tation of these word’s meaning than a human trained on
another.

There was also considerable variability among the corpus
types. For instance, the variability of semantic representations

in the Amazon product descriptions was quite limited, as all of
the different sections were highly similar to each other. That is,
words used in product descriptions are used in a very similar
manner. By contrast, the distributions for the sections from
Wikipedia were variable, documenting that this corpus is a
more diverse source of language. Additionally, the similarity
of the book collections was also quite variable, suggesting that
different authors use words in different ways, an intuitively
satisfying result.

To help understand how the language sources lead to dif-
ferent semantic representations, the similarity distributions in
Fig. 1 were reduced to their mean. The resulting measures
were used to build a multidimensional scaling solution,
displayed in Fig. 2.

Figure 2 illustrates intuitively pleasing patterns: fiction
books are similar to young-adult fiction books, while
Wikipedia is close to nonfiction books. Note also that the
corpus types span the semantic space; that is, the diversity of
the source materials accounts for a large number of language
types. Together, Figs. 1 and 2 demonstrate that there is vari-
ability in the lexical knowledge that is contained in the various

Fig. 1 Semantic similarity distributions for the words from the Toronto
word pool for each section of each corpus relative to other sections. These
similarity distributions are of the same words (e.g., similarity from farm–
farm, dog–dog, etc.) learned by the model across the different sections.
Distributions demonstrate that different sections provide different
meanings for the same words, and thus there is natural variability in
semantic content across the different sections. (Color figure online)

Table 1 Descriptions of the different book sets

Collection # of books # of sentences per book Sentence size # of words

Fiction 1,000 6,518 13.44 80,640,000

Nonfiction 1,050 6,320 17.25 103,500,000

Young adult 1,500 4,417 12.22 73,200,000

Wikipedia 16.04 96,240,000

Amazon 17.29 103,740,000
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corpora. In short, the corpora provide a solid base with which
to explore the power of experiential optimization.

Data fitting

The fitting algorithm’s goal is to determine the combination of
the text sources that best fits a representation-dependent mod-
el to a set of data. To do so, we used a simple hill-climbing
algorithm to select the corpora sections iteratively to maxi-
mize the model’s fit to a behavioral data set. A hill-climbing
algorithm is an iterative search algorithm, in which a model is
fit by incrementally improving its match to a set of data. Once
it is no longer possible to improve the fit, the algorithm
terminates.

On the first iteration, the algorithm selects the singular
section of language that provides the best fit to the data under
question, the beginning of the construction of the optimized
corpus. The model is trained on all 600 language sections, and
the section that offers the best fit is selected.

The selected language section is added into the optimized
model’s representation, and the selected section is removed
from the search set, meaning that it cannot be used again
(i.e., sampling without replacement). Details of how the se-
lected set is used to update a model’s representation depends
on the model being optimized. Typically, a model would need
to be retrained on the complete set of language selected, but
there may be computational shortcuts.

The next iteration of the algorithm finds the section that
again maximizes the model’s performance when combined
with the model’s current representation, and the new section
is removed from the search set and added into the model’s
representation. The process iterates until a further section does
not increase the model’s performance. If a section does not
cause the model’s performance to decrease, however, the al-
gorithm will select it and reiterate. The algorithm terminates

only when a new section decreases the model’s performance.
The stopping rule forces the trainingmaterials to increase their
resolution continuously, and, eventually, to maximize the set
of language materials that provide the best explanation for the
data.

The use of a simple search algorithm was intentional: It
allows for the language materials themselves to determine
the fit to data and ensures that the fit derives from the combi-
nation of language materials, not tricks of the data-fitting al-
gorithm. That said, future work should explore the use ofmore
efficient and intelligent search mechanisms (see the General
Discussion for more).

An initial illustration of EO using BEAGLE
and the TOEFL

To illustrate experiential optimization, we conducted a simu-
lation with the BEAGLE model of semantics. BEAGLE is a
random vector accumulation model; it uses sentences to up-
date a word’s semantic representation in memory. Each time
BEAGLE encounters a word in text, that word’s representa-
tion is updated with information about the other words in the
same sentence. Across a corpus, BEAGLE forms deep repre-
sentations of word meanings (Jones & Mewhort, 2007).

In BEAGLE, words are coded initially by a static environ-
mental vector (composed of values sampled from a unit nor-
mal distribution). Each environmental vector identifies the
word and can be thought of as a perceptual (visual/auditory)
label for the word. As learning proceeds, BEAGLE builds
context and order vectors that store the updated information
about the other words in the sentence and about the word’s
position in the sentence, respectively. For context information,
updating is done by summing the environmental vectors of the
other words in the sentence (with high-frequency function
words removed). Accordingly, the context representation ac-
cumulates pure co-occurrence information. Order vectors, by
contrast, accumulate rudimentary syntactic information, by
recording the word’s relative position in the sentence.

There are multiple implementations of BEAGLE (Jones &
Mewhort, 2007; Recchia, Sahlgren, Kanerva, & Jones, 2015).
Here, we used the sparse implementation described in Recchia
et al. (2015). 1 For the simulations in this section, we only used
the item vectors (sometimes called context vectors).

A classic test to assess semantic memory is the Test of
English as a Foreign Language (TOEFL; first used by
Landauer & Dumais, 1997). The TOEFL is a synonym test;
subjects are given a target word and must select the word
closest in meaning to the target from a set of four foils.

1 Vectors had a dimensionality of 10,000, and environmental vectors had six
nonzero values, similar to `Recchia et al. (2015). Consistent with model archi-
tecture, the stop list from `Landauer and Dumais (1997) was used to train
context vectors, but not order vectors (`Jones & Mewhort, 2007).

Fig. 2 Two-dimensional scaling solution for the collapsed similarity
distributions from Fig. 1
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Performance is assessed by how many of the correct syno-
nyms are found.

To demonstrate EO in action, BEAGLE vectors were fit
using 120 sections of the nonfiction corpus. To avoid local
maxima, we used 10 unique starting points, in a rank order
of the best first fitting sections. The best fit across the different
starts was displayed in all simulations that follow.

Figure 3 shows the performance on TOEFL for each itera-
tion. On the first iteration, performance ranged from about
10% correct to 35% correct, but EO’s real power is shown in
subsequent iterations: As the best-fitting sections are integrat-
ed into the overall representation, performance increased for
all remaining sections. That is, past acquired information scaf-
folds current information. At the second iteration, for exam-
ple, performance jumped to between 20% and 45% across all
sections. By iterating the process, EO built a representation
that performed to a high degree on a difficult task.

Recall that Landauer and Dumais (1997) reported accuracy
of about 55% using latent semantic analysis (LSA) on the
same TOEFL test, approximately the same value we obtained
on the fourth iteration, and EO maximized at about 70% ac-
curate after 17 iterations. That equals 850,000 sentences used
in training the model, only slightly larger than the TASA cor-
pus (~750,000 sentences) on which LSAwas trained. As Fig.
3 illustrates, a combination of language produced a rapid gain
in BEAGLE’s power to explain semantic data. Later in the
paper, we will illustrate even better performance on the
TOEFL by including text in addition to the nonfiction mate-
rials used here.

The simulation presented in Fig. 3 demonstrates the differ-
ence between EO and standard parameter fitting methods.
Typical parameter fitting algorithms, such as a SIMPLEX al-
gorithm, shift the objective fit of a model by exploring the

parameter space of that model. Likewise, EO shifts the objec-
tive fit of a model by shifting the informational content from
which a model derives knowledge. Different tasks may re-
quire different knowledge, and EO allows task requirements
to determine the best lexical information for the situation. That
is, instead of exploring the parameter space to determine op-
timal model behavior, EO explores the space of possible
knowledge that a model could acquire.

For BEAGLE, the integration of new sections is computa-
tionally simpler than in other models, as word vectors can be
pretrained for each individual section. The pretrained vectors
contain the semantic information contained in the respective
language sections. The optimized representation can then be
updated by summing these word vectors into the optimized
representation. However, this is not the case for all models.
Different models may need to be retrained with the different
sections to determine the optimal linguistic information
sources. This will be explored across the different simulation
examples contained below.

Although hill-climbing algorithms are often problematic
(e.g., they sometimes get stuck in local maxima), they none-
theless provide a simple method to determine how much lin-
guistic information is necessary to optimize the fit to human
task performance. To avoid local maxima, 10 unique starting
points were made, in a rank order of the best-first fitting sec-
tions. Using multiple starting points reduces the risk of the
algorithm becoming stuck in a local maximum. The best fit
across the different starts was displayed in all simulations that
follow.

Discussion

To illustrate EO, text was assembled from a diverse set of
sources. To determine the optimal sources needed to explain
the data, the texts were split into smaller pieces, and a
hill-climbing algorithm was used to find the selections of text
that maximally increased the fit of a model to a set of data. The
process is a kind of parameter fitting (see Shiffrin et al., 2008),
but instead of optimizing the internal process parameters to
explain data, we optimized a model’s knowledge base (i.e.,
memory representations).

BEAGLE does not have process parameters; hence, we
manipulated only the linguistic material given to the model,
with the representational parameters being held constant from
previous studies (see Recchia et al., 2015). In our next exam-
ples, we will also restrict our analysis to manipulation of lin-
guistic material because of the massive amount of computa-
tion that would be required to do both (more is provided on the
point in the General Discussion). To demonstrate the power of
EO, the optimization procedure was applied to four distinct
areas: (a) lexical semantic memory, (b) lexical organization,
(c) sentence processing, and (d) false memory. The following
four sections will contain these four examples.

Fig. 3 Example of experiential optimization applied to the BEAGLE
model on the TOEFL task. Each line represents a different section from
the nonfiction corpus. Across iterations, the process assembles a corpus
that produces optimal accuracy on the task. (Color figure online)
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Example 1: Lexical semantic memory

Models of semantic memory, beginning with latent semantic
analysis (LSA; Landauer & Dumais, 1997), have strongly
influenced behavioral studies on the effect of linguistic expe-
rience. LSA demonstrated that a simple dimensional reduction
mechanism, when combined with sufficient linguistic experi-
ence (derived from a large text corpus), could construct a
representation of the meaning of words that approximates hu-
man semantic similarity data.

Here, we use a model derived from the previously de-
scribed BEAGLE model (Jones &Mewhort, 2007). The orig-
inal BEAGLE model used circular convolution to form an
n-gram representation of the order information. As stated pre-
viously, we use a simplified form of the model that uses ran-
dom permutations of sparse binary vectors to record order
information because it reduces the computational expense of
the fitting procedure (see Recchia et al., 2015). In the follow-
ing simulations, we used order, context, and composite (the
sum of the order and context vectors) representations.

BEAGLE is a very simple mechanism; it records the
word’s use across text. No higher level information is used.

Data sources

We used three different tests: (a) synonym tests, (b) semantic
similarity ratings, and (c) item-level semantic priming. In the
previous section, we introduced the synonym test using the
TOEFL.

The second test used semantic similarity ratings in which
subjects are given a pair of words and asked to rate their
similarity (see Recchia & Jones, 2009). We used three stan-
dard similarity-rating tasks, one from Rubenstein and
Goodenough (1965), one from Miller and Charles (1991),
and one from Finkelstein et al. (2002). Rubenstein and
Goodnough used 65 noun pairs, consisting of pairs that are
synonyms to pairs that are completely unrelated in meaning.
Miller and Charles took 31 pairs from the Rubenstein and
Goodenough study to replicate the original study. Finally,
Finkelstein et al. used 353 word pairs and included common
nouns, proper nouns, verbs, and adjectives.

Finally, we tested semantic priming (e.g., Jones,
Kintsch, & Mewhort, 2006; Hare et al., 2009; Lund &
Burgess, 1996). In a semantic priming experiment, sub-
jects are asked to perform a simple task, such as lexical
decision, and the target word is preceded by a prime
word. The prime can be semantically related or not, and
priming is measured as the processing speedup observed
when the target is preceded by a semantically related item
relative to a semantically unrelated word.

Hutchison, Balota, Cortese, and Watson (2008) have
shown that models of semantic representation succeed at the
mean level across items but fail at the item-level word level.

They examined priming in lexical decision for 300 different
items and found that semantic variables were not good predic-
tors of the data; forward association strength yielded the best
correlation to overall levels of priming at r = .164, p < .01,
while LSA had a nonsignificant correlation of r = .053.
Clearly, semantic priming data are challenged when examined
at an item level; this provides an excellent test for the power of
EO.

Data-fitting methodology

We used the same data-fitting method described in the initial
illustration of EO. To build a baseline for comparison, 50
resamples of the full corpus (of 30 million sentences) were
taken. That is, 50 randomized corpora were assembled by
randomly ordering the 600 sections. These randomized cor-
pora will serve as a comparison for the increase that the opti-
mized corpus provides. The average performance increase
across each 50,000 section of these corpora was recorded.

Results

Although we used BEAGLE and the TOEFL earlier, to show
how optimization works (e.g., see Fig. 3), we used only one
language type (nonfiction books). Figure 4 shows accuracy on
the TOEFL test when all corpus types are used in fitting this
task. Figure 4 shows performance as a function of the number
of sentences included in the fit, and the three kinds of infor-
mation (complete, context, and order). In addition, Fig. 4
shows performance on the control condition in which the sec-
tions of text were assembled randomly using the complete
(context + order) representation.

Fig. 4 Results of experiential optimization on the TOEFL task for
BEAGLE’s three representation types. Random line represents the
complete BEAGLE model trained on randomly constructed corpora
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For the random corpora, the results were concatenated at 10
million sentences in order to aid visualization. The context
representation maximized at 92% accurate at 3 million
sentences, while the order representation maximized at 82%
accurate at 2.1 million sentences. For the random corpora, the
average maximum performance was 57%, consistent with the
past results (Jones & Mewhort, 2007; Landauer & Dumais,
1997). The complete model achievedmaximized performance
on the TOEFL at 97% accurate at only 1.1 million sentences.
The complete representation performed at the same level as a
native English speaker, an impressive level of performance for
a rather simple model.

As Fig. 4 illustrates, by selecting the most informative sec-
tions at each iteration, EO formed a combination of language
materials that highly matches the task.

Table 2 shows data for the different sets of semantic simi-
larity ratings. The random model is the complete BEAGLE
model (context + order) trained on randomly assembled cor-
pora. All three representation types achieved very high levels
of performance across all sets. Again, the complete model
provided the best fit. For the Rubenstein and Goodenough
(1965) data, the rank correlation was r = .962, p < .001; for
the Miller and Charles (1991) data, the rank correlation was r
= .974, p < .001 set. For the larger Finkelstein et al. (2002)
data set, the rank correlation was r = .791, p < .001. In con-
trast, the average rank correlation for the randomly composed
comparison corpora was .582, .592, and .527, respectively.
Again the EO accounted for similarity ratings over and above
fitting to randomly composed corpora.

Understanding the variability in language is key. As Fig. 1
shows, there is significant variability in the information
contained in the different sections. A natural question is what
effect this variability has on accounting for lexical behavior.

To answer, we examined the number of sections contained
in the search set on the ability of EO to fit to the data from
Finkelstein et al. (2002). To do so, we manipulated the number
of sections available from 100 to 600 in steps of 100. Each of
the five corpora contained 20% of the sections (e.g., at a size
of 100 sections, each corpus type contributed 20 sections).
Section sizes were kept constant at 50,000 sentences.
Sections were randomly sampled, and the resulting fit was
the best fit across 25 different resamples of the sections.

Figure 5 plots the increase in correlation to the Finkelstein
data as a function of number of sections included in the search.
There was a constant increase in fit as the number of sections
was increased: The added variance provided by additional
sections allowed greater flexibility in the representations con-
structed. In turn, the flexibility allowed BEAGLE to gain a
better fit using more finely tuned representations. The benefit
of finely tuned representations is a promising outcome be-
cause it suggests that the EO’s power can only increase.

An additional question about EO concerns how determin-
istic it is. That is, when EO is run, does it always select the
same sections, or is there significant variability in the likeli-
hood of a particular section being chosen. A follow-up ques-
tion is how the stimuli that are being fit to impacts the sections
that are selected.

The issue is important because it tells us about the interac-
tion between the content of the language sections and the
behavioral data being fit. If the same sections are always se-
lected, some sections may just provide a better general fit to
lexical data. However, if there is variability in the sections
selected, the method must be sensitive to both the content of
the various language sections and the behavior that is being fit.

To examine these issues, we took the word-pair similarity
of Finkelstein et al. (2002) and split the pairs into two parts (a
similarity set and a relatedness set), corresponding to the pro-
posals of Agirre et al. (2009). The similarity set contains 203
word pairs, while the relatedness set contains 252 word pairs.
BEAGLE was then optimized to the two sets independently.

Table 2 Correlations between fitted and random representations to
semantic similarity norms

Data set Context Order Complete Random

Rubenstein 0.921 0.943 0.962 0.584

Miller & Charles 0.95 0.835 0.974 0.592

Finkelstein 0.752 0.724 0.791 0.527

Note. Values represent Spearman rank correlations. All correlations are
significant at p < .001

Fig. 5 Simulation examining effects of increasing the number of sections
available to the experiential optimization method. Number of sections
was manipulated from 100 to 600, with each corpus type occupying
20% of the sections. As the number of sections, and hence variability of
the language materials, increases, there is a corresponding increase in the
power of the optimization method. This suggests that as the variability of
the language materials available to the experiential optimization
procedure increases, there is a corresponding increase in the ability to
account for variability in lexical behavior
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Each set had 30 optimized corpora generated, by initializing
the optimization algorithm with different first starting points.
The overlap between sections selected was then compared for
the corpora generated with the same data set and the corpora
generated for different data sets. EO was terminated after 20
iterations, to limit the size of the search set.

When the algorithm was optimized to the same data, on
average, 34% of the sections selected were the same across
runs of the algorithm. That is, the model is not overly predict-
able in terms of which language sections are selected during
optimization—it depends on the other sections that have al-
ready been selected. When the model was optimized to differ-
ent data sets, the overlap was reduced to 11%. In other words,
EO is not very deterministic: Different runs on the same data
can yield quite different corpus construction. Additionally,
different data force selection of different sections, which
makes sense if one considers optimization as using behavioral
data as queries to a search algorithm—different queries will
return different information. However, it is difficult to know
exactly how different the runs of the algorithm are, as the
semantic content of two sections could be very similar.

Finally, we also simulated Hutchison et al.’s (2008)
item-level semantic priming. Recall that it is difficult for
semantic-space models to account for item-level priming re-
sults. Figure 6 shows the fitted correlation as a function of the
number of sentences for context, order, complete (combined)
and random controls (randomly assembled corpora for the
complete BEAGLE model). All representation types (except
the comparison corpora) provided a good fit to the item-level
data in semantic priming. There was not a great deal of differ-
ence among the nonrandom representations, with the com-
plete model offering the best fit at r = .412, p < .001.

A skeptic may ask whether the EO can be fit to any set of
data. If EO attains high levels of fit to any set of data, it may be
capitalizing on noise within the different text sources, not
necessarily on any systematic connection between natural lan-
guage and linguistic behaviors. Likewise, if EO were able to
attain a high quantitative fit only on sets of real language-
based behaviors, the method can find the connections between
language and behavior only when the connections are actually
contained within natural language.

To evaluate this possibility, BEAGLE was fit to random-
ized data from the TOEFL, the similarity ratings from
Finkelstein et al. (2002), and the semantic priming data from
Hutchison et al. (2008). To randomize the TOEFL, a target
word was given a set of alternatives from a different target
word (e.g., for the target word grin, the model would have
to learn that it is associated withmild and select it from the set
of alternatives mild cold short windy, instead of associating it
with the word smile in the set of alternatives smile exercise rest
joke). For the word–word similarity data, two word pairs were
selected and their associates were switched, and their data
were randomized (e.g., in the data, the pair tiger–cat has an
association value of 7.35, and the pair football–basketball has
an association value of 6.81; in the randomized data, the pairs
would be tiger–basketball and football–cat, with respective
association values of 6.81 and 7.35). The same randomization
technique was used for the semantic priming data, but with
randomized related and unrelated primes. For all three data
types, the data were randomized 25 times, EO was applied
to each sample, and the average fit across samples was
recorded.

The results are displayed in Fig. 7. For all three sets of data,
the fit to the intact data far exceeded the fit to randomized data.
For example, the fit to the randomized TOEFL task is 26%
correct, which is at chance. That is, the model was unable to
learn the new associations; EO is unable to acquire associa-
tions that are not available in the statistical patterns of the
natural language environment. Likewise, for the Finkelstein
et al. (2002) data, the correlation was r = .271 to the random
data, but r = .791 for the intact data, a difference of about 55%
in the variance explained by the correlation. The fact that the
fit to the randomized data was not zero suggests that EO can
capitalize on random noise, but the amount of variance
accounted for is much greater for the intact data (62.5% vs.
7.34%). The difference was not as large for the semantic prim-
ing data, as the intact data had an r = .412, and the randomized
data had an r = .213. This signals that the fit to these data is not
as impressive as was first thought. Indeed, the fact that EO is
only providing a small advantage to semantic priming data is
concerning and likely signals that there is little variance for
EO to account for using lexical experience as a guide.
Particularly, this smaller advantage for the priming data sug-
gests that the EO method that the structure of the lexical en-
vironment is less powerful in accounting for priming data (as

Fig. 6 Results of experiential optimization on item-level priming data
from Hutchison et al. (2008) for the three representation types and the
randomly assembled corpora for the BEAGLE model of semantics
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compared with the TOEFL and word similarity data), a result
that is consistent with the large individual variance in semantic
priming (e.g., Yap, Hutchison, & Tan, 2016). It also points to
other approaches, such as processing accounts of semantic
priming (e.g., Cree, McRae, & McNorgan, 1999). They may
be more use to understanding semantic priming than distribu-
tional approaches. The differences in variance accounted for
across the tasks suggests that EO could form the basis for a
new method with which to assess how much a given task is
based in information from the lexical environment versus
from internal cognitive mechanisms. This issue will be
discussed further in the General Discussion.

In this section, we have only used the BEAGLE model of
semantics to examine lexical semantics. As described previ-
ously, BEAGLE is an ideal model to use with EO because it is
computationally efficient (especially when using the sparse
implementation of Recchia et al., 2015, which is the
implementation used here), and the use of EO requires signif-
icant amounts of computation. The other feature that makes it
useful for EO is that it is compositional—vector sets trained
on different corpora can be averaged to combine the knowl-
edge gained from the different language sections. This is not
possible with dimensionality reduction models, such as latent
semantic analysis (LSA; Landauer & Dumais, 1997) or topics
(Griffiths et al., 2007). However, one objection to the use of
only one model to demonstrate the effectiveness of EO means
that the method may be optimizing to some unique aspect of
the mathematical framework of BEAGLE, and not necessarily

determining the most informative sections of text to simulate a
task. To test this possibility, a final simulation was done where
a different distributional model—latent semantic analysis—
was trained on the optimized corpora from runs of the
BEAGLE model. If the LSA model trained on the optimized
corpora exceeds performance compared with when the model
is trained on randomly selected corpora, it would signal that
the optimization method is finding text sections that are gen-
erally informative of task performance, and not just optimiz-
ing to the mathematical peculiarities of BEAGLE.

To test this possibility, 30 optimized corpora were con-
structed by running EO with BEAGLE context vectors (as
context information aligns best with the operations of LSA)
with 30 different starting points, meaning a different corpus is
generated with each run. The optimization process was
stopped at 20 sections, providing optimized corpora of 1 mil-
lion sentences each. Additionally, 30 control corpora were
generated by randomly selecting 20 sections to correspond
to each optimized corpora. LSA was then trained on each of
the optimized and randomized corpora, and model
performance was assessed by taking the correlation to the
Finkelstein et al. (2002) word similarity data. Unlike
BEAGLE, LSA uses paragraphs as its unit of analysis.
Paragraphs were formed by combining 20 sentences in a mov-
ing window across the text sections. This means that each text
section is reduced to 2,500 paragraphs.

Figure 8 contains the average correlation of the optimized
BEAGLE models, LSA models trained with the optimized
corpora from BEAGLE, and LSA models trained with ran-
domized corpora. The BEAGLE model performed the best,

Fig. 7 Performance of BEAGLE optimized to correct and randomized
data across three different tasks. Simulation demonstrates that the
experiential optimization procedure is only able to optimize to
behavioral data when the pattern is contained within the structure of
natural language materials. The model is not able to simply fit to any
type of data, but is limited to data whose organization is related to the
natural language environment

Fig. 8 Simulation using two-step optimization where the latent semantic
analysis (LSA) model of Landauer and Dumais (1997) is trained on
optimized corpora attained from the BEAGLE model. When trained on
optimized corpora, latent semantic analysis shows an advantage com-
pared with randomized corpora that contain equivalent amounts of text
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which was expected given it is the model that was being op-
timized (it is lower than the performance of the model
contained in Table 2, as this is average performance across
the runs and the searching process was cut off after 20
iterations). However, when LSA is trained on the optimized
corpora, there is a significant advantage over the model
trained with randomly composed corpora, F(1, 59) = 12.179,
p = .001. Thus, even though BEAGLE and LSA use different
mechanism to exploit statistical regularities within natural lan-
guage, the optimization method is finding sections that gener-
alizes to a different distributional model. This suggests that
EO is not only using the mathematical properties of
BEAGLE to optimize model performance but is also finding
sections of text that contain information linguistic stimuli un-
der question. This simulation also suggests that two-step op-
timization is possible, where a computationally simple model
like BEAGLE can be used to determine informative corpora,
which can then be used to train more computationally com-
plex models like LSA. However, more research is needed to
determine the most efficient way to perform this type of
optimization.

Discussion

Semantic space models have been fundamental in exploring
the influence of linguistic structure on human behavior (Jones
et al., 2015; Riordan & Jones, 2011). In the present section, we
explored EO’s power when combined with a simplified form
of a popular semantic space. Across three data types, EO
proved highly powerful in accounting for multiple data types,
producing benchmark performance for every data set ana-
lyzed. Similar to the optimization of a model’s parameters,
by optimizing the knowledge base of a distributional model,
a model’s performance can be massively increased. However,
as the simulation in Fig. 7 shows, EO does not work with
randomized data; it requires the data to reflect the structure
of natural language.

Example 2: Lexical organization

Research in word recognition has recently focused on the
influence of environmental variables on the efficiency of lex-
ical access. Classically, word frequency has predicted the
lion’s share of variance as a lexical variable: Words that are
higher in frequency are processed more efficiently
(Broadbent, 1967). As a result, word frequency has become
a central component in models of lexical access (e.g.,
Goldinger, 1998; Murray & Forster, 2004; see Brysbaert,
Mandera, & Keuleers, 2018, for a recent review).

The importance of word frequency has spawned a variety
of norms used to select stimuli in psycholinguistic studies.
Norms derive from different corpora, ranging from the classic

Kucera and Francis (1967) counts from the Brown corpus, to
the more recent SUBTLEX counts from subtitles of television
shows and movies (Brysbaert & New, 2009). Such norms
provide an excellent fit to large-scale data, demonstrating their
utility for both theoretical and methodological applications.

The exact nature of frequency effects has been questioned
(see Jones, Dye, & Johns, 2017, for a review). Adelman,
Brown, and Quesada (2006), for example, showed that a mea-
sure that builds a word’s strength in memory by counting the
number of contexts in which it appears (operationalized as the
number of document occurrences across a corpus) provides a
superior fit to lexical access latency than word frequency does.
The measure is commonly known as contextual diversity
(CD), and its superiority over word frequency has been dem-
onstrated using several corpora (Adelman & Brown, 2008;
Adelman et al., 2006; Brysbaert & New, 2009).

Adelman et al.’s (2006) document-count measure ignores
the semantic diversity of the contexts in which the word is
found. To examine this possibility more closely, Jones,
Johns, and Recchia (2012) used an artificial language-
learning experiment that manipulated word frequency and
contextual diversity. Specifically, certain words occurred with
different sets of words (high semantic diversity), while others
occurred repeatedly with the same set (low semantic diversi-
ty). Although there was no effect of diversity for low-
frequency words, high-frequency words were retrieved more
quickly when they had been learned across multiple diverse
contexts. That is, processing savings occurred only with a
change in context. Based, in part on these results, Jones et
al. (2012) proposed a new model that builds a more accurate
measure of a word’s strength in memory, the semantic distinc-
tiveness memory (SDM) model.

SDM builds a word’s strength in memory by weighting
each new context by the amount of unique information that
the context provides about the meaning of the word. Across
various corpora, SDMwas able to account for a larger amount
of variance in a mega data set of lexical decision and naming
times over word frequency and a document count.
Additionally, Johns, Gruenenfelder, Pisoni, and Jones (2012)
demonstrated that the advantage for a semantic diversity ex-
tends to spoken word recognition performance, suggesting
that the contextual variability of a word is a general property
of linguistic organization. Johns, Sheppard, et al. (2016) have
extended this empirical work to examine the use of this infor-
mation source across aging and bilingualism. Johns, Dye, and
Jones (2016) extended Jones et al.’s (2012) artificial-language
experiment using natural language materials, and confirmed
the importance of semantic diversity across a diverse range of
areas, such as in age of acquisition effects (e.g., Hills, 2012;
Hills, Maouene, Riordan, & Smith, 2010; see also Hoffman,
Ralph, & Rogers, 2013).

The goal of the next section is to determine if experiential
fitting can provide a better fit to a large set of previously
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published lexical-decision data using SDM. We also provide
an additional test on the word frequency, contextual diversity,
and semantic diversity accounts of lexical strength.

Data sources

The main source of data was 40,000 lexical decision times
from the English Lexicon Project (ELP; Balota et al., 2007).
ELP is a standard data set that has been used to differentiate
different lexical information sources (Brysbaert & New, 2009;
Jones et al., 2012). Subject-level data will also be used from
the ELP. Additionally, a set of 2,900 lexical decisions times
for young and old adults, attained from Balota, Cortese, and
Pilotti (1999), was used to test the sensitivity of the experien-
tial fitting method to different subject groups.

Data-fitting methodology

Because the SDM uses paragraphs, we split each corpus into
3,000 paragraphs/documents. For the Wikipedia corpus, we
took a single document in the encyclopedia. For the Amazon
product descriptions, one product description was considered
a separate document. For the books, there was no simple
method to split them into paragraphs, due to differences in
formatting. Instead, we used a moving window, with a size
of 15 sentences, to assemble paragraph-like units.

Because it is a dynamic model, SDM is typically trained on
a whole corpus: previously experienced information deter-
mines what should be stored for any new context. However,
the SDM is computationally complex, so magnitudes were
derived separately for each section. To construct an overall
magnitude with experiential optimization and the SDM, at
each iteration the method selected the section whose magni-
tudes have the closest correlation to ELP lexical decision
times, and that section’s magnitudes were added into an over-
all magnitude. This process was iterated until the fit was max-
imized. To compare the performance of the SDM model, the
same fitting was done for word frequency (WF) and contex-
tual diversity (CD), a standard comparison (Johns, Dye, et al.,
2016; Johns et al., 2012; Johns, Sheppard, et al., 2016; Jones
et al., 2012; Jones et al., 2017). WF is the count of the number
of times a specific word occurred in a section. CD is the count
of the number of times a word occurred within a paragraph
within the section, ignoring repetitions within a paragraph
(Adelman et al., 2006). For example, for experiential optimi-
zation withWF, if the wordmolecule occurs 4 times in the first
section selected, and 5 times in the second section, the overall
magnitude for molecule would be 9. This count would be
slightly different for the CD variable as repeats within the
same paragraph would be removed, leading to a slightly lower
count. All variables were transformed with a natural logarithm
before assessing the correlation to the data, a standard trans-
formation (Adelman & Brown, 2008).

In concordance with our previous analyses, 50 randomly
composed corpora were constructed to be used as a compari-
son for the experientially fitted magnitudes. The average cor-
relation constructed with the SDM provides a baseline for the
optimized model’s performance.

Results

To fit to ELP data, all 40,481 lexical decision times contained
in the ELP were used. For each iteration, the best-fitting sec-
tion to the ELP data is used to update the resulting WF, CD,
and SDM count. The results of the experiential fitting method
on the z-transformed ELP lexical decision-time data are
displayed in Fig. 9. Only the results of the SDM are displayed
in this figure, because WF, CD, and the SDM produced sim-
ilar results (explored further below). The SDM result is
contrasted with the fit that CD values from the SUBTLEX
corpus provides for this data set (Brysbaert & New, 2009),
the current most widely used norm set. Figure 9 demonstrates
that the use of experiential fitting increases the fit for retrieval
latencies, even when compared against a very well-
constructed corpus. Additionally, the randomized corpora also
achieved a correlation that equaled the SUBTLEX corpus,
demonstrating that the source materials used in experiential
fitting was of very high quality.

As has been found in past studies (Johns et al., 2012),
magnitudes from SDM had the highest correlation to the
lexical-decision data, r = −.708, p < .001, compared with r =
−.702, p < .001, for contextual diversity, and r = −.701, p <
.001, for word frequency, demonstrating that all metrics opti-
mized efficiently. For the sake of comparison, the correlation
for CD values from SUBTLEX for the same data is an r =
.666, p < .001. To determine the amount of unique variance
attributed to each variable, we used the same linear regression

Fig. 9 Experiential optimization applied to the English Lexicon Project
database. Performance of the fitted and random corpora are contrasted
with the fit of the Brysbaert and New (2009) SUBTLEX corpus
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procedure used by Adelman et al. (2006) and Jones et al.
(2012) to partial out the unique variance associated with a
variable while systematically partialling out the other lexical
variables.

Figure 10 shows that the SD variable accounts for the most
variance, compared with the WF and CD variables (both of
which account for little unique variance). That is, a method
that takes into account the semantic diversity of the contexts in
which a word appears provides a significantly better fit to
retrieval times, a finding coherent with past results (Johns et
al., 2012; Jones et al., 2012).

As discussed in the connection with lexical semantic mem-
ory (Example 1), a question remains concerning the source of
variance that experiential optimization is using in fitting data,
as it is possible that it is not accounting for group or individual
characteristics, but is instead capitalizing on random noise
within the different data sets. As an initial test, 2,900 lexical
decision times were attained from Balota et al. (1999) for
younger and older adults.

Figure 11 displays the fits to these data with the experiential
optimization method for SDM (as well as for randomly as-
sembled comparison corpora), and demonstrates that a high
level of fit was produced for both subject groups across cor-
pora sampling, but with a greater fit to younger than to older
subjects (a finding also found in Johns, Sheppard, Jones, &
Taler 2016, across five different corpora). Additionally, com-
paring Fig. 11 with Fig. 9, it is obvious that the EO method
forms a comparatively larger corpus for the ELP than the
Balota et al. (1999) data. The larger corpus reflects the relative
size of the data sets (e.g., the ELP contains more than 40,000
words, while Balota et al., 1999, contains 2,900), where the

ELP has a proportionally greater amount of variance that
needs to be accounted for compared with the Balota et al.
(1999) data. This leads to additional sections being integrated
into the corpus for the ELP data set. The results of Brysbaert,
Stevens, Mandera, and Keuleers (2016) point to the simula-
tion contained in Fig. 11 selecting less lexical information than
young adults have likely received. The simulations contained
in Figs. 9 and 11 demonstrate why this is—as there are a
greater number of data points to account for, there is a corre-
sponding increase in the amount of lexical information neces-
sary to account for the data.

A more compelling analysis examined the composition of
the resulting corpora for the two subject groups. To do this, the
proportion of the different sections that were selected across
optimization was recorded on 20 iterations of the hill-climbing
algorithm. The iterations were done by removing the previ-
ously selected first section for the current run, so that each run
has a unique starting point.

The results of this analysis are shown in Fig. 12. There was
no difference in the proportions selected for the nonfiction,
Wikipedia, and Amazon sections, but there was a highly sig-
nificant difference for the young adult sections, F(1, 39) =
203.51, p < .001, and the fiction sections, F(1, 39) = 219.45,
p < .001. These differences emerge because the young subject
group had a higher proportion of young adult sections, while
older adults were better described by the fiction sections.
Given the composition of the different corpora, this suggests
that the retrieval-time data of these different groups are sensi-
tive to the statistics of different linguistic sources that the
subjects have experienced: Young adults are better described
by simpler examples of language as encoded in young adult
books, but older adults are better accounted for by more lin-
guistically diverse fiction and literature books. At least

Fig. 10 Results of the regression analysis over the word frequency (WF),
contextual diversity (CD), and SDM variables. The values represent the
amount of unique variance each of the variables account for. As
displayed, the SDM variable accounts for the greatest amount of
variance, while reducing the contribution of the other variables

Fig. 11 optimization applied to young and older lexical decision from
Balota et al. (1999). Random bars represent performance of the model on
randomly assembled corpora
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anecdotally, this is consistent with the type of linguistic expe-
riences these subjects presumably had.

Even though the simulation displayed in Fig. 12 provides
strong evidence that experiential optimization is fitting a sub-
ject’s group characteristics, it still does not conclusively dem-
onstrate that the procedure is not simply capitalizing on noise
contained within a data set. To demonstrate that the method is
indeed capitalizing on individual-level patterns of experience
that people have, a simulation was done using a cross-
validation procedure on the subject-level data contained in
the ELP (Balota et al., 2007). The ELP contains data from
810 subjects, who had on average 1,415 trials with real words.
A random percentage of each subject’s data was selected, from
5%, 25%, 50%, 75%, and 100% of a subject’s data, and the
model was fit to each slice of the subject’s data. After the EO
fitting, the language sections that were selected in the optimi-
zation process were used to construct a full SD distribution in
order to fit to the subject’s complete data set. As a comparison
for the resulting fit, the correlation between a subject’s data
and the average correlation to all other subject’s optimized
representations was assessed. If the other subject’s represen-
tations show the same increase in fit, this would suggest that
the optimization procedure is simply picking up on general
characteristics of lexical-decision data, and not on an individ-
ual’s pattern of behavioral data.

Figure 13 displays the results of this simulation. The fit of
the other subject’s representations were considerably smaller
than the fits of the representations optimized to an individual’s
data. There was a small increase in fit of other subject’s opti-
mized representation as a function of the amount of data fitted,
suggesting that there are some general patterns in the data that
the method is picking up on, but that this is much less than the
increase that is seen when optimizing to an individual’s data.

This simulation suggests that the variance that the method is
capitalizing on is primarily at the individual level, and not
general patterns in lexical-decision data.

However, the simulation displayed in Fig. 13 assesses the
fit to the subject’s complete data set, and compares the fit to
other subject’s data to which it was not optimized. An addi-
tional question is whether EO allows for an increased fit to the
data to which it was not optimized. This is the standard goal of
cross-validation procedures, although it is typically used in
training models to perform classification and prediction tasks.
That is, in a typical cross-validation procedure, a set of data is
split into smaller parts and then trained on one set and tested
on the unseen set. Performance is then assessed as to whether
the performance of the model generalizes to the test data,
typically on a classification task. Given that classification
and prediction is not the goal of the current article, a compar-
ison to determine relative performance is needed. That is, we
need to compare the fit of the optimized representation to both
the target subject’s data and also to a control subject. This will
compare whether there is generalization to an individuals sub-
ject’s unseen test data.

To do this as controlled as possible, a Monte Carlo simu-
lation was run where, on each sample, two subjects from the
English Lexicon Project were selected. The set of words that
these two subjects had in common was then found. The use of
common words allows for confidence that the sections picked
by the searching mechanism is due to differences in the values
of the lexical decision data, and not the different words that
were included in the search set. To move forward, the subjects
had to have at least 100 words in common. This requirement
was put into place to ensure that there were enough words to
provide variance in the data. The set of common words was

Fig. 13 Cross-validation simulation, using another subject’s optimized
representation as a comparison. Open bars represent fit to the subject’s
own full data from the English Lexicon Project when a certain proportion
of their data is used as an optimization criterion. Striped bars represent the
average fit to other subject’s optimized representations

Fig. 12 Proportion of sections selected by the experiential optimization
for the young and older subject data from Balota et al. (1999). Error bars
are standard error of the mean
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then randomly split into a training and test set by splitting the
data in half for both subjects. An optimized representation was
then constructed for the training data for each subject, which
means that the model was optimized to the same words, but
different behavioral patterns. Fits were then assessed across
four different tests: (a) fit to training data, (b) fit to same
subject test data, (c) fit to other subject training data, and (d)
fit to other subject test data. This was done across 5,000
resamples of two subjects using the SDM.

The results of this simulation are contained in Fig. 14.
Figure 14 shows that there was a small but consistent advan-
tage for the test set when it was from that subject’s data, when
compared against the fit of the fitted representation to the other
subject’s training and test data. This demonstrates there is an
advantage for that subject’s unseen data, which the optimiza-
tion method would not have been trained on, suggesting that
the method is picking up on the latent structure of a subject’s
event history—at least enough to provide a small, but measur-
able, advantage to unseen data.

This simulation has a number of issues. For example, re-
ducing the number of words to which the fit is made neces-
sarily limits the lexical diversity of the language sources that
are selected and may cause too narrow of a search space. That
is, the words that are included in the data split necessarily
impact the searching mechanism, such that other words, espe-
cially lower frequency words, may not be included in the
resulting representations. Of course, there are ways to modify
the searching mechanism to compensate for this, such as by
including constraint requirements about baseline frequencies
of different words. However, given that this article is meant to
introduce the concept of experiential optimization, all deriva-
tions of the method are not possible. Additionally, standard
behavioral collection techniques are not meant to address
these problems, as trial-level data are noisy, and the collection

and public release of these data is not standard, except in the
case of mega-studies (e.g., Balota et al., 2007; Hutchison et
al., 2013). Of course, this is just the start of an important
theoretical and empirical issue within the language sciences,
which requires much follow-up research.

Discussion

This section has demonstrated that EO can be expanded easily
to examine lexical retrieval and subject-level characteristics of
data. There is a rich history of using environment variables
(i.e., word frequency) to examine word retrieval patterns, with
recent research pointing to the importance of contextual and
semantic variables in the construction of a word’s strength in
the mental lexicon (Adelman et al., 2006; Jones et al., 2012).
The SDMmodel, previously shown to provide a superior fit to
large-scale lexical decision data than word frequency or a
document count, when combined with experiential fitting,
provides a better accounting than previously published norms.
In a study of young and older adult lexical decision data
(Balota et al., 1999), it was determined that the method was
sensitive to group characteristics, suggesting that the method
is fitting to the experiences that a group of subjects may have
had with language, not random noise. Additionally, simula-
tions using cross-validation and Monte Carlo procedures en-
sured that the EO procedure was capitalizing on subject-level
characteristics of the data, not just exploiting random noise
within the data and lexical sources.

Example 3: Sentence processing

The next two sections extend EO to processing models, be-
ginning with a model of sentence processing advanced by
Johns and Jones (2015). Their model, based in usage-based
theories of language (Tomasello, 2003), denies a role for
grammatical rules and argues that the utterances one hears
and produces form the basis of language processing.

It is known that an exemplar memory system can accom-
plish some of the fundamental operations of language
(Abbot-Smith & Tomasello, 2006). Jamieson and Mewhort
(2009a, 2009b, 2010, 2011) and Chubala, Johns, Jamieson,
and Mewhort (2016), for example, have shown that such a
model can account for several artificial-grammar and
implicit-learning results. Johns and Jones (2015) extended
the approach; their account explained additional results across
sentence processing, grounded cognition, and the cultural evo-
lution of language.

Johns and Jones’ (2015) model combines the BEAGLE
model of semantics (Jones & Mewhort, 2007) and the
MINERVA 2 exemplar memory model (Hintzman, 1986,
1988). The model proposes that the storage and retrieval of
linguistic experiences are the fundamental operations of lan-
guage processing. The theoretical foundation of the model is

Fig. 14 Monte Carlo cross-validation simulation examining
generalization to unseen data
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consistent with the usage-based view of language (Abbot-
Smith & Tomasello, 2006; Tomasello, 2003). The model is
fully described in Johns and Jones (2015), along with many
supporting simulations, so only a brief description of it will be
provided here.

Unlike BEAGLE, the Johns and Jones’s (2015) exemplar
comprehension model (ECM) stores each sentence encoun-
tered as a single exemplar within memory. To construct an
exemplar, the ECM uses BEAGLE’s encoding scheme to con-
struct a linear ordering of a sentence. Each sentence within a
corpus is used to generate an exemplar, which is then stored
within memory. Specifically, each word is represented with a
randomized environmental vector (equivalent to the classic
BEAGLE model), and a sentence exemplar is constructed by
forming a composite vector of the environmental vector of
each word, with each environmental vector being permuted
by its location within a sentence (i.e., the first word in the
sentence has a unique permutation, as does the second, etc.).
The result is a distributed representation of the linear ordering
of the sentence.

The mechanics of Hintzman’sMINERVA 2model are used
to retrieve information from the exemplar memory store
(Hintzman, 1986, 1988). In MINERVA 2, when a probe is
presented, it activates all memory traces in parallel proportion-
al to the similarity between the probe and the trace. The traces
are then summed into a composite vector (referred to as an
Becho^) weighted by their activation values. In a cued-recall
task, the echo represents the item that was associated with a
probe during study.

In the ECM, the memory probe is the environmental vector
for a word, along with the location of that word in a sentence.
The echo retrieves a vector from memory that contains the
latent expectations for the words that should surround that
word in that location. It is called the expectation vector.
Expectation vectors are retrieved for each word in a sentence
and are summed into an overall sentence representation, called
the comprehension vector, which represents the meaning of a
sentence in a multidimensional space (similar to the operation
of a semantic space model, but for sentences instead of
words).

The comprehension vector is used to calculate an expecta-
tion value (EV) for each word in a sentence, and the EV is the
metric needed used to simulate behavioral data. If a word is
expected, its EV should be similar to the comprehension vec-
tor, as the previous words processed should have generated a
prediction about the upcoming words in a sentence. An EV
signals how expected the current word was. A large similarity
value promotes increased processing efficiency (and hence a
decrease in processing time), because traces in memory that
require activation will already be active. The EV for a specific
word is calculated by taking the similarity between the com-
prehension vector and the retrieved expectation vector for that

word. The EV is the information source used in the simula-
tions to follow.

The unique aspect of the model, compared with other se-
mantic space models, is that it does not encode a singular
representation of a word’s meaning. Instead, meaning is dis-
tributed across the experiences that the model has had with
language. The representation of a word depends on context, so
different representations can be retrieved in response to differ-
ent memory cues (see Jamieson, Avery, Johns, & Jones, 2018;
Johns, Jamieson, Crump, Jones, & Mewhort, 2016, for
additional capabilities of this approach). As a result, the model
can process ambiguity and word sense effects in natural lan-
guage (see Johns & Jones, 2015) that other types of semantic
space models have difficulty explaining.

Because the model computes a formal value of processing
ease for each word in a sentence, it is a plausible model to
combine with experiential optimization. Additionally, the
model is very simple, with only a single parameter (a scaling
parameter used to limit the contribution of each individual
exemplar in the retrieval process). Hence, the model is
completely experience dependent. Experiential optimization
allows us to study how much variance in complex linguistic
tasks can be attributed to the linguistic experience.

Data sources

Johns and Jones (2015) tested the model using data from sev-
eral well-controlled psycholinguistic studies. Here, we studied
item-level data. Two paradigms were tested: (a) sentence com-
pletion norms and (b) ease of processing ratings. The two
paradigms examine complementary aspects of the model.
Sentence completion norms examine the model’s specific ex-
pectations, while ease-of-processing ratings examine the glob-
al difficulty that people have with different syntactic construc-
tions. Two experiments of each type will be simulated.

In the sentence-completion task, subjects are provided a
sentence with the final word missing and are asked to generate
the most probable word to fill that position. The first simula-
tion of this type used a sentence set constructed by Rayner and
Well (1996). They used Schwanenflugel’s (1986) completion
norms to assemble a set of 72 sentences, divided into high,
medium, and low completion-norm probability values.
Rayner and Well (1996) demonstrated that the probability
difference manifests in eye-tracking data, with subjects spend-
ing a greater amount of time processing low-constraint versus
high-constraint words.

Rayner andWell’s (1996) data represent a highly controlled
and simple data set. We contrasted it with performance on
Bloom and Fischler’s (1980) much broader sentence-
completion norms; their norms consist of 330 sentences and
7,500 response words, with a wide variability in completion
probabilities. Given the size of this data set, it provides a
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strong test of how well the model is able to account for vari-
ance in a complex linguistic task.

The ease-of-processing data come from plausibility/
acceptability sentence-rating tasks, in which subjects are
asked to rate how sensible those sentences are. The first set
of ratings comes from Hare, Tanenhaus, and McRae (2007).
They collected plausibility ratings for 144 sentences, which
consisted of reduced relatives, unreduced relatives, and pas-
sive sentences. Difficulty of the sentences was manipulated by
the plausibility of the noun in the sentence.

The second set of ratings, from Rayner, Warren, Juhasz,
and Liversedge (2004), consisted of plausibility ratings col-
lected from 90 sentences, with the difficulty of the sentences
manipulated by the thematic plausibility. The ratings tested the
model on comprehension measures at a global level.

Data-fitting methodology

The fitting methodology was virtually identical to the ap-
proach taken in Example 1. Each corpus was split into 120
sections, consisting of 50,000 sentence apiece. A hill-
climbing algorithm was used to determine the best combina-
tion of sentences that maximized the model’s performance.
For the sentence completion-norms data set, the EV for each
test word (calculated as the cosine similarity between the pre-
ceding sentence and each test word) was used to determine the
correlation between production probability and the expecta-
tions determined by the model. For the ease of processing, the
average EV of nonfunction words was used to calculate the
correlation between how easy the model expects the sentence
to be and the plausibility/acceptability ratings. Johns and
Jones’s (2015) model has only one processing parameter.
The parameter is a scaling parameter and is represented with
λ (fromMINERVA 2; Hintzman, 1986, 1988). This parameter
is used to minimize the contribution of any single exemplar to
the retrieval process.

In MINERVA 2, the default parameter setting is 3, but the
ECM stores many more exemplars than the classic memory
model, and so was set at 11 for all simulations, the same as
Johns and Jones (2015). Environmental vectors had a length
of 3,000 and were constructed by sampling four nonzero
values. Each nonzero entry had an equal probability of being
1 or −1. For comparison purposes, 10 random corpora were
formed by sampling 75 sections equally from all five corpora,
providing a base rate for any increase in performance associ-
ated with the experiential optimization technique.

Results

Figure 15 shows the sentence-completion correlation between
the model and the norms as a function of the number of
sentences. As shown in the figure, experiential optimization
provided a substantially better fit for the model over the

randomly constructed corpora. The top panel of Fig. 15 shows
the model’s fit to Rayner and Well’s (1996) highly controlled
sentence set. For their data set, the model maximized at an r =
.918, p < .001, for the fitted model at 800,000 sentences, while
the random corpora maximized at an r = .217, p < .05, at 2.4
million sentences. The high correlation to the Rayner andWell
(1996) data reflects the highly structured nature of the data set,
where the sentences were presorted into low, medium, and
high bins.

The results for Bloom and Fischler’s (1980) much larger
sentence-completion-norm data set are displayed in the bot-
tom panel of Fig. 15; the fitted model maximized at an r =
.462, p < .001, at 1.15 million sentences, while the random
corpora maximized at r = .093, p < .001, at 900,000 sentences.
Given the complexity of their data set (which contains more
than 7,500 responses), the fitted model accounted for a large
amount of variance.

Figure 16 shows the results for the-ease-of-processing sim-
ulations. The top panel shows the results for the fitted and
random corpora models for Hare et al.’s (2007) data. Again,
the model was also quite capable handling their data. The
fitted model maximized at an r = .685, p < .001, at 950,000
sentences, while the randommodel maximized at r = .134, ns,
at 400,000 sentences.

The bottom panel of Fig. 16 shows the ratings from Rayner
et al. (2004); the results were similar to the Hare et al. (2007)
data set. The fitted model maximized at an r = .634, p < .001,
at 650,000 sentences, while the randommodel maximized at r
= .151, ns, at 1.85 million sentences. The simulations show
that the model is very capable of accounting for global ratings,
even with different sentence types.

Fig. 15 Results of the experiential optimization and the sentence
processing model of Johns and Jones (2015) on two sentence completion
norms from Rayner and Well (1996; top panel) and Bloom and Fischler
(1980; bottom panel)
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Discussion

The exemplar-model approach to natural language (Johns &
Jones, 2015) proposes that much of the variance in linguistic
behavior reflects the structure of the individual’s experience
with language. The model stores sentences constructed using
a popular semantic space model (Jones&Mewhort, 2007) and
uses a classic exemplar model of memory to retrieve informa-
tion (Hintzman, 1986, 1988).

For our current purpose, the attractive feature of this model
is that its performance is tied entirely to the information that it
has experienced—there is no extra or built-in complexity. The
model’s only parameter, a simple scaling parameter, limits the
impact of any single exemplar on the retrieved echo. Thus, the
model provides an ideal way to test the power of experiential
optimization. Equipping the model with experiential optimi-
zation enabled it to provide excellent fits to two different mea-
sures of language processing, sentence completion and ease of
processing. Compared with performance on randomly assem-
bled corpora, the EO method provides a massive increase in
performance. Together with the simulations reported by Johns
and Jones (2015), the present work poses an interesting prob-
lem for psycholinguistic theory: Howmuch of language usage
is based on the people’s experience versus a highly structured
abstract representation of language? The results in this section
provide a promising avenue to analyze this question.

Example 4: False recognition

The previous two sections applied EO to models that have
been designed to learn the structure of language. This section

applied EO to a processing model of memory, demonstrating
the generality of the approach.

False memory is a phenomenon in which people strongly
believe to have experienced items to which they had not been
exposed. False memory has received a great amount of em-
pirical attention and is known to be sensitive to linguistic
structure. The dominant empirical paradigm is the Deese–
Rodiger–McDermott paradigm (DRM; Deese, 1959;
Roediger & McDermott, 1995).

In the DRM paradigm, subjects are asked to study items
(e.g., nurse, hospital, medicine) that are related to a critical
item (e.g., doctor), but the critical item itself is not presented
during study. On subsequent tests of memory, subjects falsely
recognize the critical item, and it is recalled at a rate similar to
the studied items (for comprehensive reviews, see Brainerd &
Reyna, 2005; Gallo, 2006).

Johns, Jones, and Mewhort (2012) proposed a comprehen-
sive theory of both standard and false recognition, called the
recognition through semantic synchronization (RSS) model.
The RSS is based on the premise that if one wants to explain
phenomena based in language (such as the majority of false
memory studies, and all DRM experiments), the basis of the
model’s representation should be routed in material learned
from the actual language environment. The representation is
important because models of semantics construct very differ-
ent similarity distributions than are typically assumed by
memory models (e.g., they are heavy-tail distributed; Johns
& Jones, 2010). Thus, in the RSS model, the word represen-
tations that are used are constructed with a semantic space
model.

Processing in the RSS model is based on neural synchro-
nization (Singer, 1999), where a probe word is attempted to be
put into sync with an episodic memory trace (akin to trying to
fit a puzzle piece in a slot). The efficiency of the synchroni-
zation process is determined by the amount of semantic infor-
mation that is contained about a word in an episodic memory
trace. Decision operates by accumulating information about
whether a word occurred across the synchronization process.

The RSSmodel accounts for standard results in recognition
memory and for a wide variety of false-memory results. The
latter include levels of false recognition to different lists (Gallo
& Roediger, 2002; Roediger & McDermott, 1995; Stadler,
Roediger, & McDermott, 1999), item-level fits to different
lists, effects of associative and thematic strength (Cann,
McRae, & Katz, 2011; Hutchison & Balota, 2005), and devel-
opmental reversals in false recognition (Brainerd, Reyna, &
Ceci, 2008; Brainerd, Reyna, & Forrest, 2002). Additionally,
the RSS has been modified to account for recollection-based
false memories (Johns, Jones, & Mewhort, 2014).

The RSS model can assess the effectiveness of experiential
optimization as a general method in a model that has both
representation and processing assumptions. For the purposes
of the current article, the fact that the model is based on lexical

Fig. 16 Results of experiential optimization and the sentence processing
model of Johns and Jones (2015) on two plausibility rating data sets from
Hare et al. (2007; top panel) and Rayner et al. (2004; bottom panel)
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semantic representation means EO can be applied, and its
benefit evaluated. RSS was fit to item-level differences in
levels of false recognition to critical items across multiple
DRM norms.

Data sources

The current simulation’s goal was to maximize the model’s fit
to item-level differences in false-recognition rates. Different
critical items elicit different levels of false recognition. For
example, the critical item window is falsely recognized 87%
of the time, while the critical item king is only falsely recog-
nized 27% of the time (Stadler et al., 1999). Because it uses a
realistic semantic representation, it can account for item-level
variance, one of its appealing aspects.

The model’s fit in Johns et al. (2012) to item levels of false
recognition was an r = .41, p < .001, a value comparable to the
best semantic predictor of false recognition, backward associ-
ation strength. The model’s fit was assessed across two sets of
data: the normed lists from Stadler et al. (1999) and Gallo and
Roediger (2002). Between these two studies there are 53 crit-
ical item lists. Given the success of EO so far, we expect the
RSS to surpass the level of performance found by Johns et al.
(2012) by a wide margin when augmented with EO.

Data-fitting methodology

Because the RSS uses paragraphs, or documents, to construct
its semantic representation, the fitting method split each cor-
pus into 5,000 paragraphs/documents. A larger paragraph size
was used than before, because stabilizing the RSS model re-
quires a significantly greater amount of computation than the
previous models, and the amount of computation increases
linearly with the number of documents integrated into the
model’s representation. There was a total of 325 sections used
in this simulation.

To simplify the analysis, the same parameter set that had
been used tomodel false recognition in Johns et al. (2012) was
used here. That is, the internal cognitive parameters were kept
constant, but the linguistic experience of the model was ma-
nipulated. Although manipulating both processing parameters
and the experience that themodel is exposed to should provide
higher performance, the techniques to accomplish joint fitting
have not been developed (because of the massive amount of
computation that it would require: this is discussed further in
the General Discussion).

To construct a comparison value for the fitted model, the
best pure co-occurrence representation was constructed with
EO. It is the co-occurrence representation that the model used,
without any of the machinery of the RSS being used to make
decisions. Additionally, keeping with the previous simula-
tions, the model was trained with 25 random corpora, to form
a comparison for the fitted representation.

Recall from the simulation in Fig. 7 that EO was unable to
fit to randomly assembled data. A similar randomly assembled
manipulation was repeated: the item-level probability of dif-
ferent critical words eliciting false recognition was shuffled
randomly across critical words. The data were randomly shuf-
fled 25 times, and the average item-level fit was assessed. The
objective was to test whether EO can capitalize on random
data.

Results

Figure 17 depicts the results of the simulation with the RSS
augmented with EO. The figure also displays the fit of the
original RSS, r = .41, p < .001, and the fit of the best EO
optimized representation-only model, r = 0.482, p < .001.
As before, EO could not optimize to the randomly shuffled
data: it achieved an average fit of only r = 0.251 to the ran-
domized data. The result corroborates the results in Fig. 7.

As Fig. 17 demonstrates, the EO-RSS model provides a
substantial increase, even at only 5,000 paragraphs, r = .59,
p < .001, and maximizes at an r = .756, p < .001 at 45,000
paragraphs. As a comparison, the model trained with random-
ly composed corpora performed similarly to the RSS trained
with TASA, as shown in Fig. 8. By combining realistic pro-
cess and representation types, better performance can be
attained without positing additional complex parameters (cf.
Estes, 1975).

Fig. 17 Experiential optimization applied to the recognition through
semantic synchronization (RSS) model of false recognition. The first
point is the RSS’s performance on the item-level fit to false recognition
rates published in Johns et al. (2012), and the second point is the best fit
that could be constructed by fitting the representation alone. The closed
squares depict the optimized representation and the open circles depict the
model trained with randomized corpora. By combining an optimized
representation with a powerful processing mechanism, the model was
able to account for behavior at a much greater resolution.
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Themodel’s fit is particularly impressive given that the best
fit to this data is a regression model of seven variables (includ-
ing behavioral data, such as veridical recall rates) obtained a fit
of r = .69, p < .001 (Roediger, Watson, McDermott, & Gallo,
2001). That is, the EO-augmented cognitive model accounts
for more variance in false recognition rates than a regression
of all relevant variables (including many similar behavioral
variables).

Discussion

The RSSmodel has proven to be highly successful at account-
ing for a variety standard and false memory effects (Johns,
Jones, & Mewhort, 2012, 2014). The model’s advantage is
that it is based around a semantic representation learned from
a corpus, making it easy to apply EO. The results show that
EO is not just a way to optimize models designed to look at
lexical semantic tasks; it can also be used to optimize models
that are used to explain tasks that use language as stimuli, such
as in studies of human memory.

General discussion

The current paper describes a new theoretical approach to
optimize cognitive models, experiential optimization, devel-
oped to explore the power that variance in language has in
accounting for lexical behavior. In EO, the information to
which the model is exposed is manipulated to provide the best
fit to a set of data. To do so, very large sets of texts spanning
multiples subject areas and genres were assembled, including
an online encyclopedia, product descriptions, and sets of fic-
tion, non-fiction, and young-adult books. The corpora were
split into small sections, and a simple hill-climbing algorithm
was used to determine the best combination of these materials
for a specific model and set of data. We demonstrated that
fitting background knowledge with EO, when combined with
experience-based cognitive models, provided benchmark fits
to a number of tasks and areas, including semantic memory
(Jones & Mewhort, 2007), lexical organization (Jones et al.,
2012), sentence processing (Johns & Jones, 2015), and false
memory (Johns, Jones, & Mewhort, 2012).

The underlying philosophy of the method is similar to stan-
dard parameter-fitting methods commonly applied to process
parameters (Shiffrin et al., 2008): we assume that there is
natural variability in the parameters that define the cognitive
processes underlying behavior and that there is natural vari-
ability in the knowledge that different subject groups have
experienced. These differences lead to variability in behavior.
Likewise, there is natural variability in the experience that
people have had with language. By optimizing the experience
that groups are assumed to have had, it is possible to dramat-
ically increase the performance of a model with EO.

The fundamental point of this article is that language-based
models depend on the content of experience that is given to
them. Similar to a model given an incorrect parameter set, a
model that has an insufficient or incorrect knowledge base is
going to give a poor accounting when tested. That is, even a
wonderful model of natural language can be proposed that
does not function appropriately because it does not have the
correct experience to do so. EO provides a framework under
which models of language and memory can be developed that
eliminates this possibility. Just as standard parameter fitting
techniques point to the need to control the process compo-
nents of cognition, EO points to the fact that it is equally
necessary to control the experiential factors of a cognitive
model.

One exciting aspect of EO is that it provides a framework
with which to discriminate the contributions of internal cog-
nitive mechanisms and external information sources, one of
the classic goals of cognitive science (Anderson & Schooler,
1991; Estes, 1975; Simon, 1969; Tomasello, 2003). If one
accepts that language is dictated by a complex interaction of
biological and cultural evolution (Chater, Reali, &
Christiansen, 2009; Christiansen & Chater, 2008, 2016;
Tomasello, 2010), it is necessary to determine how much is
derived from evolvedmechanisms and howmuch is explained
by the heavily structured environment in which humans are
embedded in (and the domain-general learning mechanisms
designed to exploit that redundancy). The simulations report-
ed here provide substantial evidence that the content of the
information that a model knows is important to its behavior,
underscoring the fact that human behavior is sensitive to the
knowledge that a person has gained from experience. Further
empirical and theoretical work will allow us to examine these
issues at a much finer-grain than is reported here (see Nelson
& Shffrin, 2013; Wells et al., 2009, for important empirical
paradigms used to study these problems). The simulation re-
ported in Fig. 12 (in which EO selected different corpus con-
structions to account for lexical-decision data in younger and
older adults) is a promising first step towards showing that
group-level experience can be estimated.

A related application of the method is to differentiate tasks
by how dependent task behavior is on lexical experience ver-
sus internal cognitive processing parameters. As is demon-
strated in Fig. 7, by randomizing a set of data and comparing
the fits of intact data to the randomized data, different patterns
are found for different tasks. Specifically, semantic priming
showed a much smaller advantage when compared to optimiz-
ing to the TOEFL test and word-pair similarity data. This
suggests that semantic priming may dependmore on cognitive
processes and individual differences than it is on lexical expe-
rience (cf. Yap et al., 2016), especially when compared to
synonymy tests or similarity ratings. For future research, the
contrast promises a way to differentiate the cognitive and ex-
periential components of different lexical behaviors.

Psychon Bull Rev



More generally, the present work points to the importance
of models capable of extracting information from large text
bases, an issue that has been explored in greater detail else-
where (e.g., Chubala et al., 2016; Hills, Jones, & Todd, 2012;
Johns & Jones, 2010; Johns, Jones, & Mewhort, 2012; Johns
& Jones, 2015; Johns, Taler, et al., 2017;Mewhort et al., 2017;
Taler et al., 2013). Basing a model’s performance on large-
scale environmental information provides a strong case for
the model’s plausibility, because it can scale to human levels
of experience. The tests in this article show that making a
model experience-dependent allows us to examine how much
additional power it has as a function of specific experience.

Additionally, EO provides a framework for the general op-
timization of distributional models. Optimization is especially
relevant for applied problems, such as assessing performance
of cognitively impaired patients on common neuropsycholog-
ical tasks (e.g., Johns, et al., 2018). Given a requirement (such
as discriminating the performance of cognitively impaired pa-
tients from cognitively normal subjects on a semantic task),
the model can be optimized to include the most relevant lex-
ical sources, thereby giving the model its best shot at success-
fully performing the task. EO would ensure that, given suffi-
cient diversity in the lexical sources, a model would fail be-
cause of a lack of the correct lexical information but rather
because of other aspect of the task’s requirements. EO pro-
vides a flexible framework within which to embed distribu-
tional models; it provides a model with the ability to adapt its
knowledge base to any new task that is required of it.

In order to use EO to optimize a model’s fit to tasks outside
of behavioral data, such as performing classification, will re-
quire cross-validation based studies, to ensure that the model
is not overfitting the results of one group of people, but can
also adapt to another group. However, this changes the under-
lying philosophy of the technique, as it is no longer being used
to estimate the type of information that a group of subjects (or
an individual subject) used to accomplish a specific task.
Instead it becomes an estimate of the set of language materials
that will generalize to the largest number of people as possible.
The goal of EO is to optimize and gain additional understand-
ing into the performance of a given model, but this does not
preclude its use in machine learning applications.

From an individual learning perspective, the opposite is
also important: how much better can an individual learn from
materials that are coherent with their past experience? Lexical
organization models, such as the SDM (Jones et al., 2012),
suggest that learning is dynamic: howmuch one acquires from
a specific experience is dependent on what one has learned
previously. Thus, given knowledge about the specific types of
experiences an individual has had, it is possible to present
materials that should allow for that individual to optimally
acquire new lexical information.

As touched on above, an issue with all optimization proce-
dures is the danger of overfitting to data.We have attempted to
examine this issue as it pertains to EO in the simulation
contained in Figs. 12, 13 and 14. However, there is still con-
siderable research required to examine the connection be-
tween lexical experience (e.g. reading the book To Kill a
Mockingbird) and lexical behavior. Ideally, if a subject had
read To Kill a Mockingbird, and if lexical experience has a
truly measurable impact on lexical behavior, then EO should
select this book when optimizing to that subject’s behavior.
However, most current data collection procedures within cog-
nitive psychology preclude this type of analysis. Specifically,
this type of analysis requires large amounts of item-level data,
averaged for an individual, a difficult and task-sensitive re-
quirement. It also requires knowing the specific lexical expe-
riences that an individual has had. For experiential accounts of
language to continue to develop, it will become increasingly
necessary to develop the methodology to understand the im-
pact that individual experiences with language have on the
language processing system, with both controlled (e.g.,
Johns, Dye, et al., 2016) and large-scale experimentation.

A related question to the issue of overfitting is that of model
complexity. As Jones, Hills, and Todd (2015) point out,
corpus-based models do not conform to standard methods of
model complexity. Specifically, classic methods of model
complexity (e.g. the Bayesian Information Criterion;
Schwarz, 1978) penalize models for having a greater number
of parameters. It is not clear how experience-based models of
cognition fit into this framework, and whether a model trained
on a larger corpus should be considered more complex. As
experience-based approaches to cognition continue to devel-
op, there is a need to develop both conceptual and mathemat-
ical frameworks to determine the place of this model type in
cognitive theory.

One obvious limitation of EO is that it uses a simple hill-
climbing algorithm as its optimization method—the selection
of hill climbing was purposeful due to its extreme simplicity
as a search algorithm. It allowed the overall power of EO to be
demonstrated, but there are many published techniques that
could be used to increase the power and efficiency of the
method. However, unlike many parameter-fitting techniques,
experiential optimization is not based on optimizing an under-
lying function, but, instead, is more akin to optimal sampling.
This is due to it being difficult to define the connection be-
tween any two selections of language, a limitation that im-
pedes the use of most standard methodologies.

Certain techniques are better suited to experiential optimi-
zation than others. For example, population-based methods,
such as genetic algorithms (Davis, 1991; Mitchell, 1998), may
provide a promising avenue to further this approach, as it does
not have to be based on functional approximation, but can be
more akin to efficient random search. It is possible that the
structure of semantic space could be defined with a great
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enough resolution that stochastic optimization algorithms
could be applied, but more research needs to be done into
defining how linguistic materials combine to form new repre-
sentations (which is also a model dependent problem).

As Simon (1969) described, in order to provide a complete
account of behavior, it is necessary to understand both the
internal mechanisms and the environmental information that
people use to behave. This is especially important in the study
of language, as the vast majority of linguistic theories have
focused on the internal mechanisms that are responsible for
linguistic behavior, while the influence of environmental in-
formation has been downplayed. This was necessary because
of a lack of both large amount of texts and computational
resources, but neither of these are modern limitations. It is
readily possible to examine the impact of linguistic informa-
tion on human behavior, and by optimizing the linguistic in-
formation that a model is exposed to, it allows for a powerful
test of a model’s ability to account for behavioral data.

Author note Part of this work was presented at the 37th
Meeting of the Cognitive Science Society. We would like to
thank Rich Shiffrin for feedback during the writing of this
manuscript . This research was supported by IES
R305A150546 to M.N.J.

References

Abbot-Smith, K., & Tomasello, M. (2006). Exemplar-learning and sche-
matization in a usage-based account of syntactic acquisition. The
Linguistic Review, 23, 275-290.

Adelman, J. S., & Brown, G. D. (2008). Modeling lexical decision: The
form of frequency and diversity effects. Psychological Review, 115,
214.

Adelman, J. S., Brown, G. D. A., & Quesada, J. F. (2006). Contextual
diversity, not word frequency, determines word-naming and lexical
decision time. Psychological Science, 17, 814–823.

Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M., & Soroa, A.
(2009, May). A study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of the
North American Chapter of the Association for Computational
Linguistics (pp. 19–27). Stroudsburg, PA: Association for
Computational Linguistics.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment
in memory. Psychological Science, 2, 396–408.

Balota, D. A., Cortese, M. J., Hutchison, K. A., Neely, J. H., Nelson, D.,
Simpson, G. B., & Treiman, R. (2007). The English Lexicon
Project. Behavior Research Methods, 339, 445–459.

Balota, D. A., Cortese, M. J., & Pilotti, M. (1999). Item-level analyses of
lexical decision performance: Results from a mega-study. In
Abstracts of the 40th Annual Meeting of the Psychonomics Society
(p. 44). Los Angeles, CA: Psychonomic Society.

Bannard, C., Lieven, E., & Tomasello, M. (2008). Modeling children’s
early grammatical knowledge. Proceedings of the National
Academy of Sciences, 106, 17284–17289.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and
Brain Sciences, 22, 577–660.

Bloom, P. A., & Fischler, I. S. (1980). Completion norms for 329 sentence
contexts. Memory & Cognition, 8, 631–642.

Brainerd, C. J., & Reyna, V. F. (2005). The science of false memory.
Oxford, UK: Oxford University Press.

Brainerd, C. J., Reyna, V. F., & Forrest, T. J. (2002). Are young children
susceptible to the false-memory illusion? Child Development, 73,
1363–1377.

Brainerd, C. J., Reyna, V. F., & Ceci, S. J. (2008). Developmental rever-
sals in false memory: A review of data and theory. Psychological
Bulletin, 134, 343.

Broadbent, D. E. (1967). Word-frequency effect and response bias.
Psychological Review, 74, 1–15.

Brysbaert, M., Mandera, P., & Keuleers, E. (2018). The word frequency
effect in word processing: An updated review. Current Directions in
Psychological Science, 27, 45–50.

Brysbaert, M., & New, B. (2009). Moving beyond Kucèra and Francis: A
critical evaluation of current word frequency norms and the intro-
duction of a new and improved word frequency measure for
American English. Behavior Research Methods, 41, 977–990.

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How
many words do we know? Practical estimates of vocabulary size
dependent on word definition, the degree of language input and
the participant’s age. Frontiers in Psychology, 7, 1116.

Bullinaria, J. A., & Levy, J. P. (2007). Extracting semantic representations
from word co-occurrence statistics: A computational study.
Behavior Research Methods, 39, 510–526.

Bullinaria, J. A., & Levy, J. P. (2012). Extracting semantic representations
from word co-occurrence statistics: Stop-lists, stemming, and SVD.
Behavior Research Methods, 44, 890–907.

Cann, D. R., McRae, K., & Katz, A. N. (2011). False recall in the Deese-
Roediger-McDermott paradigm: The roles of gist and associative
strength. The Quarterly Journal of Experimental Psychology, 64,
1515–1542.

Chater, N., Reali, F., & Christiansen, M. C. (2009). Restrictions on bio-
logical evolution in language evolution.Proceedings of the National
Academy of Sciences of the United States of America, 106, 1015–
1020.

Christiansen, M., & Chater, N. (2008). Language as shaped by the brain.
Behavioral and Brain Sciences, 31, 489–558.

Christiansen, M. H., & Chater, N. (2016). The Now-or-Never bottleneck:
A fundamental constraint on language. Behavioral and Brain
Sciences, 39, e62.

Chubala, C. M., Johns, B. T., Jamieson, R. K., & Mewhort, D. J. K.
(2016). Applying an exemplar model to the implicit rule-learning
task: Implicit learning of semantic structure. Quarterly Journal of
Experimental Psychology, 69, 1049–1055.

Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of
lexical conceptual processing: Simulating semantic priming.
Cognitive Science, 23, 371–414.

Davis, L. (Ed.). (1991). Handbook of genetic algorithms. New York, NY:
Van Nostrand Reinhold.

Deese, J. (1959). On the prediction of occurrence of particular verbal
intrusions in immediate recall. Journal of Experimental
Psychology, 58, 17–22.

Estes, W. K. (1955). Statistical theory of distributional phenomena in
learning. Psychological Review, 62, 369.

Estes, W. K. (1975). Some targets for mathematical psychology. Journal
of Mathematical Psychology, 12, 263–282.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z.,
Wolfman, G., & Ruppin, E. (2002). Placing search in context: The
concept revisited. ACM Transactions on Information Systems, 20,
116–131.

Forster, K. I., & Chambers, S. M. (1973). Lexical access and naming
time. Journal of Verbal Learning and Verbal Behavior, 12, 627–635.

Psychon Bull Rev



Friendly, M., Franklin, P. E., Hoffman, D., & Rubin, D. C. (1982). The
Toronto word pool: Norms for imagery, concreteness, orthographic
variables, and grammatical usage for 1,080 words. Behavior
Research Methods & Instrumentation, 14, 375–399.

Gallo, D. A. (2006). Associative illusions of memory: False memory
research in DRM and related tasks. New York, NY: Psychology
Press.

Gallo, D. A., & Roediger, H.L. (2002). Variability among word lists in
eliciting memory illusions: Evidence for associative activation and
monitoring. Journal of Memory and Language, 47, 469–497.

Goldinger, S. D. (1998). Echoes of echoes? An episodic trace theory of
lexical access. Psychological Review, 105, 251–279.

Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More
use almost always means a smaller frequency effect: Aging, bilin-
gualism, and the weaker links hypothesis. Journal of Memory and
Language, 58, 787–814.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in
semantic representation. Psychological Review, 114, 211–244.

Hare, M., Tanenhaus, M. K., & McRae, K. (2007). Understanding and
producing the reduced relative construction: Evidence from ratings,
editing and corpora. Journal of Memory and Language, 56, 410–
435.

Hare, M., Jones, M., Thomson, C., Kelly, S., & McRae, K. (2009).
Activating event knowledge. Cognition, 111, 151–167.

Hills, T. (2012). The company that words keep: Comparing the statistical
structure of child versus adult-directed language. Journal of Child
Language, 40, 586–604.

Hills, T., Jones, M., & Todd, P. M. (2012). Optimal foraging in semantic
memory. Psychological Review, 119, 431–440.

Hills, T., Maouene, J., Riordan, B., & Smith, L. (2010). The associative
structure of language and contextual diversity in early language
acquisition. Journal of Memory and Language, 63, 259–273.

Hintzman, D. L. (1986). BSchema abstraction^ in a multiple-trace mem-
ory model. Psychological Review, 93, 411–428.

Hintzman, D. L. (1988). Judgments of frequency and recognition mem-
ory in a multiple-trace memory model. Psychological Review, 95,
528–551.

Hoffman, P., Ralph, M. A. L., & Rogers, T. T. (2013). Semantic diversity:
A measure of semantic ambiguity based on variability in the con-
textual usage of words. Behavior Research Methods, 45, 718–730.

Hummel, J. E., &Holyoak, K. J. (2003). A symbolic-connectionist theory
of relational inference and generalization. Psychological Review,
110, 220–264.

Hutchison, K. A., & Balota, D. A. (2005). Decoupling semantic and
associative information in falsememories: Explorations with seman-
tically ambiguous and unambiguous critical words. Journal of
Memory and Language, 52, 1–28.

Hutchison, K. A., Balota, D. A., Cortese, M. J., & Watson, J. M. (2008).
Predicting semantic priming at the item level. TheQuarterly Journal
of Experimental Psychology, 61, 1036–1066.

Hutchison, K. A., Balota, D. A., Neely, J. H., Cortese, M. J., Cohen-
Shikora, E. R., Tse, C. S., . . . Buchanan, E. (2013). The semantic
priming project. Behavior Research Methods, 45, 1099–1114.

Jamieson, R. K., & Mewhort, D. J. K. (2009a). Applying an exemplar
model to the artificial-grammar task: Inferring grammaticality from
similarity. Quarterly Journal of Experimental Psychology, 62, 550–
575.

Jamieson, R. K., & Mewhort, D. J. K. (2009b). Applying an exemplar
model to the serial reaction time task: Anticipating from experience.
Quarterly Journal of Experimental Psychology, 62, 1757–1783.

Jamieson, R. K., & Mewhort, D. J. K. (2010). Applying an exemplar
model to the artificial-grammar task: String-completion and perfor-
mance for individual items. Quarterly Journal of Experimental
Psychology, 63, 1014-1039.

Jamieson, R. K., & Mewhort, D. J. K. (2011). Grammaticality is inferred
from global similarity: A reply to Kinder (2010). Quarterly Journal
of Experimental Psychology, 64, 209–216.

Jamieson, R. K., Avery, J. E., Johns, B. T., & Jones, M. N. (2018). An
instance theory of distributional semantics. In C. Kalish, M. Rau, J.
Zhu, & T. T. Rogers (Eds.), Proceedings of the 39th Conference of
the Cognitive Science Society. Austin TX: Cognitive Science
Society.

Johns, B. T., Dye, M. W., & Jones, M. N. (2016). The influence of
contextual diversity on word learning. Psychonomic Bulletin &
Review, 4, 1214–1220.

Johns, B. T., Gruenenfelder, T. M., Pisoni, D. B., & Jones, M. N. (2012).
Effects of word frequency, contextual diversity, and semantic dis-
tinctiveness on spoken word recognition. Journal of the Acoustical
Society of America, 132, EL74–EL80.

Johns, B. T., & Jamieson, R. K. (2018). A large-scale analysis of variance
of written language. Cognitive Science, 42, 1360–1374.

Johns, B. T., Jamieson, R. K., Crump,M. J. C., Jones, M. N., &Mewhort,
D. J. K. (2016). The combinatorial power of experience (pp. 1325–
1330). In A. Papafragou, D. Grodner, D. Mirman, & J. C. Trueswell
(Eds.), Proceedings of the 38th Annual Conference of the Cognitive
Science Society.. Austin, TX: Cognitive Science Society

Johns, B. T., & Jones, M. N. (2010). Evaluating the random representa-
tion assumption of lexical semantics in cognitive models.
Psychonomic Bulletin and Review, 17, 662–672.

Johns, B. T., & Jones, M. N. (2015). Generating structure from experi-
ence: A retrieval-based model of language processing. Canadian
Journal of Experimental Psychology, 69, 233–251.

Johns, B. T., Jones, M. N., & Mewhort, D. J. K. (2012). A synchroniza-
tion account of false recognition. Cognitive Psychology, 65, 486–
518.

Johns, B. T., Jones, M. N., & Mewhort, D. J. K. (2014). A continuous
source reinstatement model of true and illusory recollection. In P.
Bello, M. Gurarini, M. McShane, & B. Scassellayi (Eds.),
Proceedings of the 36th annual Cognitive Science Conference (pp.
248–253). Austin, TX: Cognitive Science Society.

Johns, B. T., Mewhort, D. J. K., & Jones, M. N. (2017). Small worlds and
big data: Examining the simplification assumption in cognitive
modeling. In M. N. Jones (Ed.), Big data in cognitive science:
From methods to insights (pp. 227–245). New York, NY: Taylor
& Francis.

Johns, B. T., Sheppard, C., Jones, M. N., & Taler, V. (2016). The role of
semantic diversity in lexical organization across aging and bilingual-
ism. Frontiers in Psychology, 7, 703–714.

Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M.,
Kareken, D. A., . . . Unverzagt, F. W., & Jones, M. N. (2017).
Cognitive modeling as an interface between brain and behavior:
Measuring the semantic decline in mild cognitive impairment.
Canadian Journal of Experimental Psychology, 72(2), 117–126.
doi:https://doi.org/10.1037/cep000013

Johns, B. T., Taler, V., Pisoni, D. B., Farlow, M. R., Hake, A. M.,
Kareken, D. A., Unverzagt, F. W., & Jones, M. N. (2018).
Cognitive modeling as an interface between brain and behavior:
Measuring the semantic decline in mild cognitive impairment.
Canadian Journal of Experimental Psychology, 72, 117–126

Jones, M. N., & Dye, M. W. (2018). Big data methods for discourse
analysis. In M. F. Schober, D. N. Rapp, & M. A. Britt (Eds.),
Handbook of discourse processes (2nd ed., pp. 117–124). New
York, NY: Routledge.

Jones, M. N., Dye, M., & Johns, B. T. (2017). Context as an organiza-
tional principle of the lexicon. In B. Ross (Ed.), The psychology of
learning and motivation (Vol. 67, p. 43). New York, NY: Academic
Press.

Jones, M. N., Johns, B. T., & Recchia, G. (2012). The role of semantic
diversity in lexical organization. Canadian Journal of Experimental
Psychology, 66, 115–124.

Psychon Bull Rev

https://doi.org/10.1037/cep000013


Jones, M. N., Kintsch, W., & Mewhort, D. J. K. (2006). High-
dimensional semantic space accounts of priming. Journal of
Memory and Language, 55, 534–552.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning
and order information in a composite holographic lexicon.
Psychological Review, 114, 1–37.

Jones, M. N., Willits, J. A., & Dennis, S. (2015). Models of semantic
memory. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels
(Eds.), Oxford handbook of mathematical and computational psy-
chology (pp. 232–254). New York: Oxford University Press.

Kucera, H., & Francis, W. N. (1967). Computational analysis of present-
day English. Providence, Rl: Brown University Press.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem:
The latent semantic analysis theory of the acquisition, induction, and
representation of knowledge. Psychological Review, 104, 211–240.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic
spaces from lexical co-occurrence. Behavior Research Methods,
Instruments, & Computers, 28, 203–208.

McAuley, J., & Leskovec, J. (2013). Hidden factors and hidden topics:
Understanding rating dimensions with review text (pp. 165–172). In
Proceedings of the 7th ACM Conference on Recommender Systems
(RecSys). New York, NY: ACM.

Mewhort, D. J. K., Shabahang, K. D., & Franklin. D. R. J. (2017).
Release from PI: An analysis and a model. Psychonomic Bulletin
& Review. doi:https://doi.org/10.3758/s13423-017-1327-3

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their
compositionality. In C. J. C. Burges, L, Bottou, M., Welling, Z.,
Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural infor-
mation processing systems 26 (pp. 3111–3119). Retrieved from
https://papers.nips.cc/paper/5021-distributed-representations-of-
words-and-phrases-and-their-compositionality

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic
similarity. Language & Cognitive Processes, 6, 1–28.

Mitchell, M. (1998). An introduction to genetic algorithms. Cambridge,
MA: MIT Press.

Murray, W. S., & Forster, K. (2004). Serial mechanisms in lexical access:
The rank hypothesis. Psychological Review, 111, 721–756.

Myung, J. I., Cavagnaro, D. R., & Pitt, M. A. (2017). Model evaluation
and selection. InW. H. Batchelder, H. Colonius, E. Dzhafarov & J. I.
Myung (Eds.), New handbook of mathematical psychology, Vol. 1:
Measurement and methodology (pp. 552–598). Cambridge, UK:
Cambridge University Press.

Nelson, A. B., & Shiffrin, R. M. (2013). The co-evolution of knowledge
and event memory. Psychological Review, 120, 356–394.

Norris, D. (2006). The Bayesian reader: Explaining word recognition as
an optimal Bayesian decision process. Psychological Review, 113,
327–357.

Ramscar,M., Hendrix, P., Shaoul, C.,Milin, P., & Baayen, H. (2014). The
myth of cognitive decline: Non-linear dynamics of lifelong learning.
Topics in Cognitive Science, 6, 5–42.

Ramscar, M., Sun, C. C., Hendrix, P., & Baayen, H. (2017). The mismea-
surement of mind: Life-span changes in paired-associate-learning
scores reflect the Bcost^ of learning, not cognitive decline.
Psychological Science, 28, 1171–1179.

Rayner, K., Warren, T., Juhasz, B. J., & Liversedge, S. P. (2004). The
effect of plausibility on eye movements in reading. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 30,
1290–1301.

Rayner, K., &Well, A. D. (1996). Effects of contextual constraint on eye
movements in reading: A further examination. Psychonomic
Bulletin & Review, 3, 504–509.

Reali, F., & Christiansen, M. H. (2007). Processing of relative clauses is
made easier by frequency of occurrence. Journal of Memory and
Language, 57, 1-23.

Recchia, G. L., & Jones, M. N. (2009). More data trumps smarter algo-
rithms: Comparing pointwise mutual information to latent semantic
analysis. Behavior Research Methods, 41, 657–663.

Recchia, G. L., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015).
Encoding sequential information in vector space models of seman-
tics: Comparing holographic reduced representation and random
permutation. Computational Intelligence & Neuroscience. doi:
https://doi.org/10.1155/2015/986574

Rehder, B., Schreiner, M. E., Wolfe, M. B., Laham, D., Landauer, T. K.,
& Kintsch, W. (1998). Using latent semantic analysis to assess
knowledge: Some technical considerations. Discourse Processes,
25, 337–354.

Riordan, B., & Jones, M. N. (2011). Redundancy in perceptual and lin-
guistic experience: Comparing feature-based and distributional
models of semantic representation. Topics in Cognitive Science, 3,
303–345.

Roediger, H. L., & McDermott, K. B. (1995). Creating false memories:
Remembering words not presented in lists. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 21, 803–814.

Roediger, H. L.,Watson, J.M.,McDermott, K. B., &Gallo, D. A. (2001).
Factors that determine false recall: A multiple regression analysis.
Psychonomic Bulletin & Review, 8, 385–407.

Rubenstein, H., & Goodenough, J. (1965). Contextual correlates of syn-
onymy. Communications of the ACM, 8, 627–633.

Schwanenflugel, P. J. (1986). Completion norms for final words of
sentences using a multiple production measure. Behavior Research
Methods, Instruments, & Computers, 18, 363–371.

Shaoul, C., &Westbury, C. (2010). Exploring lexical co-occurrence space
using HiDEx. Behavior Research Methods, 42, 393–413.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-
dimensional objects. Science, 171, 701–703.

Shiffrin, R. M. (2010). Perspectives on modeling in cognitive science.
Topics in Cognitive Science, 2, 736-750.

Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E. J. (2008). A
survey of model evaluation approaches with a tutorial on hierarchi-
cal Bayesian methods. Cognitive Science, 32, 1248–1284.

Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA:MIT
Press.

Singer, W. (1999). Neural synchrony: A versatile code for the definition
of bindings. Neuron, 24, 49–65.

Stadler, M. A., Roediger, H. L., & McDermott, K. B. (1999). Norms for
word lists that create memories.Memory& Cognition, 29, 424–432.

Stone, B., Dennis, S., & Kwantes, P. J. (2011). Comparing methods for
single paragraph similarity analysis. Topics in Cognitive Science, 3,
92–122.

Taler, V., Johns, B. T., Young, K., Sheppard, C., & Jones,M. N. (2013). A
computational analysis of semantic structure in bilingual verbal flu-
ency performance. Journal of Memory and Language, 69, 607–618.

Tomasello, M. (2003).Constructing a language: A usage-based theory of
language acquisition.

Tomasello, M. (2010). Origins of human communication. Cambridge,
MA: MIT Press.

Wells, J. B., Christiansen, M. H., Race, D. S., Acheson, D. J., &
MacDonald, M. C. (2009). Experience and sentence processing:
Statistical learning and relative clause comprehension. Cognitive
Psychology, 58, 250–271.

Yap, M. J., Hutchison, K. A., & Tan, L. C. (2016). Individual differences
in semantic priming performance: Insights from the Semantic
Priming Project. In M. Jones (Ed.), Big data in cognitive science
(pp. 203–226). New York, NY: Psychology Press.

Psychon Bull Rev

https://doi.org/10.3758/s13423-017-1327-3
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://doi.org/10.1155/2015/986574

	Using experiential optimization to build lexical representations
	Abstract
	Optimization framework and language sources
	Training materials
	Data fitting
	An initial illustration of EO using BEAGLE and the TOEFL
	Discussion
	Example 1: Lexical semantic memory
	Data sources
	Data-fitting methodology
	Results
	Discussion

	Example 2: Lexical organization
	Data sources
	Data-fitting methodology
	Results
	Discussion
	Example 3: Sentence processing
	Data sources
	Data-fitting methodology
	Results
	Discussion

	Example 4: False recognition
	Data sources
	Data-fitting methodology
	Results
	Discussion

	General discussion
	References


