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A B S T R A C T

Recent research in the artificial grammar learning literature has shown that a simple instance model of memory
can account for a wide variety of artificial grammar results (Jamieson & Mewhort, 2009, 2010, 2011), indicating
that language processing may have more in common with episodic memory than previously thought. These
results have been used to develop new instance models of natural language processing, including a model of
sentence comprehension (Johns & Jones, 2015) and semantic memory (Jamieson, Avery, Johns, & Jones, 2018).
The foundations of the models lie in the storage and retrieval of episodic traces of linguistic experience. The
current research extends the idea to account for natural language sentence production. We show that the
structure of language itself provides sufficient information to generate syntactically correct sentences, even with
no higher-level information (such as knowledge of grammatical classes) available to the model. Additionally, we
demonstrate that the model can account for a variety of effects from the structural priming literature (e.g., Bock,
1986). This work provides insight into the highly structured nature of natural language, and how instance
memory models can be a powerful model type to exploit this structure. Additionally, it demonstrates the utility
of using the formalisms developed in episodic memory research to understand performance in other domains,
such as in language processing.

Introduction

Human languages are both productive and regular. By productive,
we mean that an infinite number of utterances are possible for any
language. By regular, we mean that the utterances are systematically
ordered. To explain these aspects of language, it has been proposed that
language performance reflects the use of a formal grammar, due to the
fact that a grammar of sufficient complexity can construct utterances of
any length while maintaining consistency in utterance construction
(e.g., Chomsky, 1957, 1988).

The idea that sentence production reflects the use of a formal
grammar has proven powerful, with a great deal of linguistic intuition
supporting its development (Robins, 2013). Grammatical accounts of
language processing usually assume that an individual’s experience
with language does not include sufficient information to support

linguistic competence. The notion underlying this position is that the
human ability to use language outpaces what their capabilities should
be, given the seemingly limited information available from the ex-
perience that people have with language (Gold, 1967). The position is
often called “the poverty of the stimulus argument” (see Berwick,
Poetroski, Yankama, & Chomsky, 2011; Laurence & Margolis, 2001;
Perfors, Tenenbaum, & Regeir, 2006).

Analogous arguments favouring specialized processes with ab-
stracted, higher-level representations have been advanced in many
other areas in the cognitive sciences, most prominently in categoriza-
tion (Rosch, 1973; Rosch, Mervis, Gray, Johnson, & Boyes-Braem,
1976). At the same time, alternative frameworks to abstractionist the-
ories of categorization have been explored, mainly based around the
storage of individual experiences, or instances (Brooks, 1978).

Instance-based theories propose that the individual experiences that
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people have with different aspects of their environment serves as the
unit of knowledge on which cognition is based. For example, in the case
of categorization, a person’s ability to label a dog as a dog instead of a
cat is based upon experiences the person has had with individual dogs
and cats (e.g. Nosofsky, 1986, 1991). That is, the similarity structure in
the known instances of a natural category provides sufficient informa-
tion to support the required discrimination. Similar theories have been
used in a number of other domains including automatization (Logan,
1988), recognition memory (Hintzman, 1988), attention (Kruschke,
1992), word recognition (Goldinger, 1998), and schema abstraction
(Hintzman, 1986; for an integrated review see Logan, 2002).

Artificial grammar learning is a second domain where abstractionist
and instance models have been pitted against one another. Classic ac-
counts of artificial grammar learning propose that when subjects study
strings of symbols generated from a pre-defined grammar, they use the
study experience to generate a representation of the grammar that had
been used to construct the stimulus strings, and, in turn, use the newly
acquired grammatical representation to discriminate grammatical from
ungrammatical stimulus strings (Reber, 1967). Paradoxically, however,
people are unable to articulate the rules that they used to accomplish
the discrimination (i.e., their knowledge is implicit). Jamieson and
Mewhort (2009, 2010), however, call such abstractionist explanations
into question.

Jamieson and Mewhort demonstrated that a simple exemplar-based
memory model (MINERVA 2; see Hintzman, 1986) can explain many of
the relevant findings in the artificial grammar literature. The model
works because it stores a record of the environment displayed during
study (e.g., each presented string is stored as an episodic memory
trace), and the stored instances contain information about the structure
of the underlying grammar. As a result, decisions about the gramma-
ticality of a particular string can be made on the basis of similarity to
stored examples without assuming the need for high-level abstraction of
the grammar.

More specifically, to explain a variety of phenomena from artificial-
grammar tasks, Jamieson and Mewhort (2011) implemented storage
and retrieval operations from a classic model of episodic memory
(Minerva 2; Hintzman, 1986), combined with an account of word
meaning taken from Jones and Mewhort’s (2007) BEAGLE model, a
computational theory of lexical semantics; which, in turn, is based in
formalisms developed in the classic TODAM memory models of
Murdock (1982, 1983). According to the account, each studied gram-
matical sentence is stored in memory. When a probe is presented at test,
it retrieves all of the stored items in parallel. If the information re-
trieved from memory is consistent with the probe, the probe is judged
to be grammatical; else, it is judged to be ungrammatical.

Despite the model’s simplicity, it predicts a surprising number of
results in artificial-grammar learning and implicit memory including (a)
the linear relationship between mean judgement accuracy and the re-
dundancy of the generative grammar, (b) judgements of grammaticality
for individual test items, (c) grammatical string completion, (d) varia-
tion in people’s judgements depending on how they represent strings in
memory, and (e) implicit judgements on high level category char-
acteristics (Jamieson & Mewhort, 2009, 2010, 2011; Chubala &
Jamieson, 2013; Chubala, Johns, Jamieson, & Mewhort, 2016).

The power of this model comes from the natural correlation be-
tween the form and amount of structure in an instance produced from a
grammar, and the structure in the grammar itself (Jamieson &
Mewhort, 2005). It follows, then, that each studied grammatical in-
stance provides information about the underlying grammar. It also
follows that a collection of grammatical instances will almost always
provide a sum of information greater than that provided by one in-
stance alone, where features shared in the items that are forced by
structure in the grammar come to the fore and features that are idio-
syncratic or unusual recede into the background. That is, it is the
combination of instances that gives the model its power and it is the
sum of instances that emerges in the act of parallel retrieval. The

question, now, is whether the mechanisms of instance models, explored
by Jamieson and Mewhort (2009, 2010) and established across a wide
range of cognitions (e.g., Logan, 2002), can be extended to include
natural language processing.

The use of instance technology to explain language processing is not
without precedent; indeed, the approach has been championed by the
usage-based perspective of child language acquisition (Tomasello,
2003; Abbot-Smith & Tomasello, 2006; see also Thiessen & Pavlik, 2013
for a different instance approach to child language development) and is
based on a good deal of evidence that language development is item-
based rather than acquired by abstracted representations over syntactic
categories (Tomasello, 2000; Bannard, Lieven, & Tomasello, 2009).
Instance models are also coherent with recent approaches to the cul-
tural evolution of language (e.g. Christiansen & Chater, 2008, 2016)
which propose that language processing evolved on top of domain
general cognitive processes, such as memory. Additionally, they fulfil
many of the requirements of recent general theories of language pro-
cessing (e.g. Beckner et al., 2009) that propose language is fundamen-
tally adaptive in nature. A language that is adaptive entails that dif-
ferent language users should communicate in similar ways as other
users of that language, given common social and cultural experience.
Instance theories are adaptive as their behavior are completely de-
pendent on past experience.

Related to the use of instance models as general models of language
processing, there have been many developments in the computational
modeling of semantic memory and knowledge acquisition that suggest
recordings of environmental regularities provide a powerful basis for
models of lexical behavior. Termed distributional models of semantics,
these models have been used to assess the poverty of the stimulus ar-
gument in semantics (see Landauer & Dumais, 1997). This class of
model learns the meaning of words through the analysis of large text
sources (e.g. Griffiths, Steyvers, & Tenenbaum, 2007; Jamieson, Avery,
Johns, & Jones, 2018; Johns, Jones, & Mewhort, 2019; Jones &
Mewhort, 2007; Landauer & Dumais, 1997; Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013; for a review, see Jones, Wilits, & Dennis, 2015).
Distributional models have demonstrated that there is an explicit con-
nection in the representations that people have about the meaning of
words and how those words are used in the natural language environ-
ment, similar to classic notions developed in linguistics and the philo-
sophy of language (e.g., Firth, 1957; Wittgenstein, 1953). That is, dis-
tributional models challenge the orthodox view of innate knowledge
(e.g., Chomsky, 1991; Quine, 1960; Shepard, 1987), and suggest in-
stead that the environment provides sufficient information to acquire a
sophisticated comprehension of word meanings. In other words, the
richness of experience is the antidote to the poverty of a stimulus.

As a first demonstration that instance models of memory can pro-
vide a coherent account of language processing, Johns and Jones
(2015) combined a standard instance memory retrieval process (MI-
NERVA 2; Hintzman, 1986) with the learning mechanisms of a dis-
tributional semantic model, namely the BEAGLE model (Jones &
Mewhort, 2007; Recchia, Sahlgren, Kanerva, & Jones, 2015). Their
model will be referred to as the Instance Comprehension Model (ICM).
This model is part of a larger research effort attempting to integrate
distributional semantic models with realistic cognitive processing
models (see also Johns, Jones, & Mewhort, 2012; Johns, Mewhort, &
Jones, 2017; Jones, Johns, & Recchia, 2012; Mewhort, Shabahang, &
Franklin, 2018; Osth, Shabahang, Mewhort, & Heathcote, 2020).

BEAGLE is a specific type of distributional model entitled a vector
accumulation model that encodes both the sentential context (the
words that a specific word appears with in a sentence) and order (the
relative position of words in a sentence) information. The ICM uses
BEAGLE's encoding schemes to form sentence representations, and
stores them as traces in an instance memory. By combining this en-
coding scheme with the retrieval processes used in MINERVA, Johns
and Jones (2015) demonstrated that an instance model of language
could account for a variety of findings, including sentence reading-time
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effects, integration of linguistic and perceptual processing, and the
cultural evolution of language (see also, Johns et al., 2019, who provide
a mechanism to optimize this model type and extend it other types of
data). The model’s success provides a promising basis for establishing
instance models as a coherent theoretical account of language com-
prehension. Additionally, it demonstrated that syntactic processing can
be captured in a system that has no higher-level information integrated
into its processing and representational architecture.

Jamieson et al. (2018; see also Kwantes, 2005 for an earlier ap-
proach and Crump, Jamieson, Johns, & Jones, 2020 for a refinement of
Jamieson et al., 2018) recently extended this approach by demon-
strating that an instance model of memory can serve as a general model
of semantic memory. The key insight of this model, and other related
approaches (see Jones, 2018 for a review), is that the meaning of a
word can be constructed at retrieval rather than each word having a
singular vector representation, as is common in most distributional
models. This insight allows the model to capture effects of polysemy on
word meanings, an aspect of lexical semantics that most distributional
models struggle with. Additionally, Kwantes and Mewhort (1999)
proposed an instance model of lexical decision, demonstrating the uti-
lity of instance models to account for language-based behaviors.

Combined, the works of Johns and Jones (2015) and Jamieson et al.
(2018) show that an instance memory model can account for language
comprehension data at both the single word and sentence level. Ad-
ditionally, these models are scaled to have a similar level of experience
that adult human beings have, demonstrating the flexibility of the ap-
proach. However, for instance memory models to be considered a vi-
able model of language processing, it needs to be demonstrated that it
can be extended to other data types.

Instance models are not the only model type that have been suc-
cessful at capturing artificial grammar learning, as simple recurrent
networks (SRN; Elman, 1990) have been shown highly capable of ex-
plaining a variety of results within this area (e.g., Cleeremans &
McClelland, 1991; Dienes, Altmann, & Gao, 1999; Kinder, 2000; Kinder
& Lotz, 2009). Indeed, the arguments for and against these approaches
have been discussed in the recent literature (see Kinder, 2010; Jamieson
& Mewhort, 2011).

Even though both instance models and SRNs have been successful in
accounting for results in the artificial grammar literature, they have
very different theoretical bases. SRNs embody the original con-
ceptualizations of Reber’s (1967) notion of implicit learning, where it is
assumed that the rules of the grammar are being abstracted across re-
peated experience with the strings of a grammar, and those abstracted
rules are contained in the connection weights of the neural network. As
stated previously, instance models provide a much different explana-
tion of performance on this task, where it is proposed that there is no
abstraction across experience during learning in an artificial grammar
task. Instead, the ability of the model to discriminate grammaticality
lies in the similarity of a test string to previously experienced strings
(Brooks, 1978; Brooks & Vokey, 1991; Jamieson & Mewhort, 2010,
2011), or abstraction at retrieval.

One area where SRN models have been successfully applied is in
language production (Chang, Dell, & Bock, 2006). The SRN model of
Chang et al. (2006) is able to account for many classic and con-
temporary results in language production, particularly results in
structural priming (Bock, 1986; see Pickering & Ferreira, 2008 for a
review). In language production, structural priming is the finding that
the syntactic structure of previously processed sentences impacts the
syntactic construction chosen for a future production. Chang et al.
(2006) used an SRN as the basis of a model which was capable of
learning word sequence information, as well as form-meaning map-
pings, in order to explain a large variety of results from the language
production literature (see Reitter, Keller, & Moore, 2011 for a different
approach to account for this data using an ACT-R architecture).

The goal of this article is not to provide a complete explanation of
language production, as was the goal of Chang et al. (2006). Given that

the majority of data in the language production literature use picture
production tasks, a model requires a perceptual processing module (or
assumptions about how perceptual processing operates). Although
Johns and Jones (2015) demonstrated that an instance model of lan-
guage can integrate perceptual information into its comprehension
processes, that is outside of the goals of this paper. Instead, the question
that this article is attempting to answer is the power that an instance
model provides as the underlying basis for a language production
model, and combined with the results of Johns and Jones (2015) and
Jamieson et al. (2018), an integrated model of language comprehension
and production.

The overall goal of the current article is to extend the instance ap-
proach of cognition to language production, with the additional goal of
demonstrating the power and flexibility of instance memory models (in
combination with well-known distributional approaches to lexical se-
mantics) in accounting for complex lexical phenomena. Instance models
are attractive because the complexity of the model lies in the com-
plexity of the information that has been encoded. We will estimate the
power of the structure in samples of language by storing sentences
within an instance memory and then assessing how effectively the
stored information can generate grammatically correct utterances and
also whether it can account for behavioral results from the structural
priming literature. In particular, we will show that the productive and
regular nature of language provides enough structure to produce
grammatically correct utterances, even though the model will have no
explicit grammatical knowledge. Instead, the model’s successes will
emerge simply from the formation of memory traces that encode the
regular nature of language.

An additional goal of this article is to demonstrate how a standard
computational model of memory can have useful properties when
scaled up to realistic levels of human experience, integrating memory
modeling into new trends in big data approaches to cognition (see
Jones, 2017; Johns, Jamieson, & Jones, 2020). In a typical computa-
tional model of memory, the model is given enough information to si-
mulate a task- and stimulus-specific experimental setup. However, this
ignores both the depth and breadth of lifelong learning (Qui & Johns,
2020). By analyzing how memory models respond to a large number of
traces, it provides insight into the dynamics of memory retrieval at a
larger scale. It further suggests that the mechanisms that humans use
for language production may have been exapted from mechanisms that
we originally evolved for episodic memory retrieval, coherent with the
proposals of Christiansen and Chater (2008). The results of this article
will point to instance memory models being a promising model type to
examine the effects of accumulated experience on behavior.

However, we do not wish to propose that the model outlined below
is a complete explanation of language production, or even close to
being so, as it is lacking many central cognitive and language proces-
sing aspects that would allow for it to be considered such. Instead, we
wish to demonstrate that an instance approach to language production
contains some of the necessary components to account for natural
language production data, while making minimal assumptions about
the nature of linguistic representation in the mind. Thus, this work will
serve as an existence proof of the power of an instance language model
to account for language production behavior, serving as a com-
plementary piece to the development of instance models of language
comprehension (Jamieson et al., 2018; Johns & Jones, 2015; Jones,
2018), and also demonstrates the generality of the instance approach to
various forms of cognition.

The first section of this paper will provide an overview of the me-
chanisms of our modeling approach. The second section of the paper
will demonstrate the capabilities of the model, by showing that the
model is capable of constructing grammatical sentences from unordered
sets of words under various manipulations. The third section contains
simulations demonstrating that the modeling framework developed can
account for various standard effects from the structural priming lit-
erature.
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The instance production model (IPM)

The IPM model will have a similar conceptual basis to the pre-
viously discussed ICM model of Johns and Jones (2015), with some
modifications to how memory traces are formed.

The ICM combined a MINERVA-like retrieval process with the
learning mechanisms of the BEAGLE model of semantics (Jones &
Mewhort, 2007; Recchia, et al., 2015). In vector accumulation models,
such as BEAGLE, words are initially represented by randomly generated
static environmental vectors, which are assumed to represent the per-
ceptual properties of a word. To encode the location of a word within a
sentence, the ICM used the random permutation techniques developed
by Sahlgren (2006) and Recchia et al. (2015). The models of Sahlgren
(2006) and Recchia et al. (2015) utilize binary splatter codes (sparse
ternary vectors) for environmental vectors, where non-zero values are
either +1 or −1 with equal probability. These vectors are typically
very sparse. Random permutations simply randomly shuffle the ele-
ments of a word’s environmental vector. Each location within the
sentence is given a unique permutation. A word in a location uses that
random permutation to form a unique binding between that word and
that location within a sentence. The representation of sentence is then
the sum of all the permuted environmental vectors into a single com-
posite vector. The successes of Sahlgren (2006), Recchia et al. (2015),
and Johns and Jones (2015) demonstrate the power of absolute order in
language: the serial positions of words in sentences provide a great deal
of information about the usage and thus the meaning of that word.

In contrast to Sahlgren (2006) and Recchia et al.’s (2015) techni-
ques, the original BEAGLE model was built using circular convolution
(Kelly, Blostein, & Mewhort, 2013; Plate, 1995) to encode n-gram in-
formation. Circular convolution is a function that takes in two vectors
and constructs a new, unique vector that represents the association
between the two. In BEAGLE, this results in a sophisticated re-
presentation of the order that words are used in a language, constructed
through exposure to natural language sentences in a large text base.

Technically, BEAGLE utilizes non-commutative circular convolution
to encode serial-order information, such as encoding linear order n-
grams within a sentence. Non-commutative circular convolution is ac-
complished by scrambling indices in a word’s environmental vector
differently depending on whether it is the predecessor or successor in a
bigram (see Jones & Mewhort, 2007; Plate, 1995).

The important aspect to understand about circular convolution for
the purposes of this article is that it allows for a unique vector re-
presentation of chunks of language, such as bigrams and trigrams (al-
though larger chunks are possible; Jones & Mewhort, 2007), to be
formed. For example, consider the sentence “the girl ran home.” Using
linear bigram and trigrams, unique vectors are formed for the following
chunks: the girl, girl ran, ran home, the girl ran, and girl ran home. By
collapsing these bigram and trigram vectors into a composite, a simple
encoding of syntactic structure is formed. Importantly, chunks that are
high in frequency (e.g., the girl) across experience provide substantial
constraint about the correct ordering of sentences, as the following si-
mulations will show. In the remainder of this paper, we denote non-
commutative circular convolution with the symbol (e.g., z= x y).
For brevity, we will use the term convolution in place of non-commu-
tative circular convolution.

Thus, there are two main types of information that can be encoded
within an instance for a sentence: absolute-position (pure location in-
formation) and relative position (n-gram information). Given that
Recchia et al.’s (2015) technique was not designed to encode n-grams,
their representational schema is not applicable here.

Although it has not been done previously, both types of information
can be readily captured within the BEAGLE framework. Instead of re-
presenting a location within a sentence with a random permutation,
locations can be represented by a random vector (generated in the same
fashion as an environmental vector). Then a word vector can be con-
volved with a location vector in order to generate a unique signature of

a word occurring in that location. By doing this for each word in a
sentence, and summing the resulting vectors into a composite vector, a
linear ordering of a sentence is obtained.

The advantage to using this framework is that it allows for linear n-
gram information to also be integrated into the representation, in ac-
cordance with the standard mechanisms of BEAGLE (allowing smaller
chunks of sentences to be integrated into the representation), along
with pure location information. This combination allows the model to
capitalize on the successes of both the ICM and the original BEAGLE
model.

In addition to order information, BEAGLE also encodes context in-
formation (operationalized in terms of the other words that occur with
a target word in a sentence). Context information is encoded as the sum
of all of the environmental vectors (except the target word) that occur
in a sentence. Sentential context and order information offer different
knowledge about the usage of a word, and have been shown to account
for complementary types of linguistic information (Jones & Mewhort,
2007; Hare, Jones, Thomson, Kelly, & McRae, 2009; Johns, et al.,
2018). In memory, each sentence processed by the model will have both
a context and order vector concatenated together.

Additionally, in the IPM context and order vectors will also have a
different conceptual basis and purpose. The communicative intent be-
hind a to-be-produced sentence is represented by its sentence context
vector, which carries no order information. That is, a context vector
represents what the model wants to produce. Successful sentence pro-
duction requires that order be imposed onto the words in the sentence
context vector. In IPM, order information is applied to a sentence
context vector at the time of memory retrieval. The context vector is
treated as a probe or retrieval cue (e.g., a set of unordered words), that
retrieves similar sentences stored in memory. In particular, the context
cue will be used to retrieve the likely ordering of a sentence, based upon
the pattern of instances stored in memory. Stored sentences have both
context and order information, and the retrieved order information
from memory is applied to sequence the words in sentence context
probe. In other words, given a set of unordered words, the goal of the
IPM is to retrieve the correct syntactic ordering for those words. We
now express the model more formally.

Representation

In the model, each word is represented by its own unique random
environmental vector, w, of dimensionality N, where each dimension
takes a randomly sampled value from a normal distribution with mean
zero and variance N1/ . In the simulations that follow, N = 2,048.

Each sentence is represented by two vectors, context and order, both
of which are constructed from the environmental vectors.

The sentence’s context vector, c, is computed as,

∑=
=

c wi
i

n

1 (1)

where c is the context vector, n is the number of words in the sentence,
and wi is the environment vector that represents the word in serial
position i of the sentence. As shown, the context vector sums the in-
formation from all of the words that appear in the sentence, but it does
not include any information about the order in which the words oc-
curred. For example, the context vector that encodes “eat your dinner” is
equal to the context vector that encodes “dinner your eat.”

A word’s order vector is equal to the sum of location information
and linear bi- and trigrams. The order vector, o, is computed as,

(2)

where o is the order vector, n is the number of words in the sentence, wi

is the word in serial position i, wi-1 is the word in serial position i − 1,
wi-2 is the word in serial position i − 2, li is a vector that represents
serial position i, and denotes directional circular convolution (see
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Jones & Mewhort, 2007; Plate, 1995). As shown, the order vector sums
information about (a) what word appears in each serial position in the
sentence (i.e., serial position information), (b) which pairs of words
follow one another from left to right in the sentence (i.e., bigram in-
formation), and (c) which triplets of words follow one another from left
to right in the sentence (i.e., trigram information). Given the inclusion
of trigram information, the formula cannot be applied to a sentence
with fewer than three words. Additionally, in the following simulations,
the power of the individual components will be tested both in-
dependently and jointly to identify the most parsimonious combination
of lexical sources.

Finally, a sentence’s vector representation, s, is a 2N dimensional
vector formed by concatenating the N dimensional context vector and
the N dimensional order vector such that dimensions 1…N in s store the
context vector and dimensions N + 1…2N in s store the sentence’s
order vector. Thus a sentence is represented as a vector s that is equal to
c // o, where // represents concatenation.

Storage of language experience

To represent experience with language, we store m sentences to a
m × 2N matrix, where rows represent sentences and columns represent
features that encode the information in the sentence. Thus, memory for
1000 sentences is represented in a 1000 × 4096 (both the context and
order vectors have 2048 values) matrix whereas memory for 125,000
sentences is represented by a 125,000 × 4096 matrix.

Retrieval

Retrieval in the model is parallel, probe-specific, and similarity
driven. When a probe is presented to memory, it interacts with the
information in the stored traces to construct the memory of a previously
experienced event. Decision follows from the construction. Because
retrieval is similarity-driven, a probe retrieves traces that are similar to
it. Because a probe retrieves whole traces from memory and the whole
traces record both context and order information in the sentence, a
probe that includes just the context information also retrieves the order
information that it has co-occurred with in the past. This is how the
model simulates cued-recall; it is the mechanism that the model uses to
retrieve a sentence (i.e., word order) given a context vector (i.e., an
unordered list of words).

The first step of the retrieval process is to activate each of i traces
according to the similarity between the probe p and the memory trace
Mi:

=A S p M( , )i λ (3)

where p is the context vector that encodes an unordered list of words
(i.e., includes information in serial positions 1…N with serial positions
N + 1…2N set to zero), M is the memory matrix that stores the model’s
sentence knowledge, i is the location of the trace being activated in
memory, and λ is a fixed scaling parameter that controls the impact of
any single trace on memory retrieval (this parameter was set at 9 in the
following simulations to simulate a very selective trace specific re-
trieval). The similarity function used is a vector cosine, and is calcu-
lated as follows:

=
∑ ×

∑ ∑

=

= =

S x y
x y

x y
( , ) j

N
j ij

j
N

j j
N

ij

1

1
2

1
2

(4)

where N is the size of the vector. Then, the echo, e, is computed as,

∑= ×
=

Ae M
i

m

i
1 (5)

where e is the retrieved echo, and m is the number of sentences stored
in memory. As with a sentence representation, features 1…N in e

represent the context vector retrieved from memory and features
N + 1…2N in e represents the order vector retrieved from memory.

Decision

Our goal is to measure the model’s ability to produce a syntactically
correct sentence composed of words presented to the model in an un-
ordered word list. For example, given the words eat, dinner, and your,
we would like the model to produce “eat your dinner” rather than
“dinner eat your”.

To accomplish the transformation from unordered word list to
syntactic production, the model compares the order vector in the echo
to each of the n! order vectors corresponding to the n! ways of ordering
the words in the unordered list. For example, given the list eat, your,
and dinner the model retrieves an order vector based on the context
vector, c = weat + wyour + wdinner, and then compares the retrieved
order vector against all 3! = 6 sentences that can be constructed from
the three words: “eat your dinner”, “eat dinner your”, “your eat
dinner”, “your dinner eat”, “dinner eat your”, and “dinner your eat”.
The order vector that is most similar to the information in the echo is
selected as the best alternative. Because all other orders bear some si-
milarity to the order information in the echo, the operation can also be
used to rank order the model’s preference over all possible n! sentences
from first (i.e., most similar) to last (i.e., least similar).

The benefit of this production mechanism lies in its simplicity: the
chosen ordering of a sentence will be the one most coherent with the
structure of past experience. There is no sophistication built into the
production mechanism as it allows for a baseline to be established
about the power of experience in constructing grammatically correct
sentences.

Methods

The simulations that follow apply the model to a sentence produc-
tion task. Each simulation involved two major steps. First, we con-
structed a record of language experience by storing m sentences of
length n to memory, where n will range between 3 and 7 word sen-
tences. Second, we computed the model’s ability to translate each of
200 unordered word lists of length n into ordered sentences of length n
(that is, to take a set of unordered words and construct a syntactically
correct sentence).

We expect the model will re-write unordered word lists as syntac-
tically correct sentences. That is, we expect the model to take a list of
unordered words as a memory cue and use its past experience with
natural language to order those words in a sound syntactic manner. If
true, our simulations would demonstrate that parallel retrieval from a
record of language is sufficient to produce a behavioural hallmark of
syntactic behavior and would add to the growing literature empha-
sizing the importance of an individual’s experience with language as
well as the use-based approach to language learning and language
theory (Abbot-Smith & Tomasello, 2006; Jamieson & Mewhort, 2010,
2011; Johns & Jones, 2015). See Chang, Lieven, and Tomasello (2008)
for a similar model evaluation scheme.

Test sentences

We assembled a pool of 30,000,000 sentences from a number of
sources including Wikipedia articles, Amazon product descriptions
(attained from McAuley & Leskovec, 2013), 1000 fiction books, 1050
non-fiction books, and 1500 young adult books. The properties of these
corpora can be found in Johns et al. (2019). Once collated, we orga-
nized the total list into sub-lists of sentences composed of 3, 4, 5, 6, and
7 words. Finally, we used the sentences in the final pool to construct a
list of 200 three-word test sentences, 200 four-word test sentences, 200
five-word test sentences, 200 six-word test sentences, and 200 seven-
word test sentences. All test-sentence occurrences were removed from
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the training material, so that the model would have never experienced a
test sentence before, meaning that the model is being asked to produce
sentences that has not previously seen.

All sentences are simple in construction, and use mostly high fre-
quency words with personal pronouns, but, given the complexity of the
task, they should provide a useful assessment of the model’s perfor-
mance.2 These sentences have been used by others for model validation
as well (see Kelly, Mewhort, & West, 2017; Kelly, Reitter, & West,
2017). No punctuation was included in the representations of the sen-
tences. No general syntactic construction was used, but the majority
consist of single phrase structures. Sample test sentences can be found
in Table 1.

Simulation parameters

The simulations focused on two key parameters: sentence length
(i.e., n) and language experience (i.e., m). Sentence length was assessed
by conducting separate simulations for sentences of length × = 3, 4, 5,
6, and 7. That is, for simulations involving constructing three word
sentences, the memory matrix only contains representations of three
word sentences (see the General Discussion for an examination of this
issue). As sentence length increases so does the combinatorial problem
that the model faces. For sentences of length 3, 4, 5, 6, and 7, there are
6, 24, 120, 720, and 5040 possible orderings, respectively. Only sen-
tences of a set length were included in a simulation (i.e., if sentences of
length 5 were being tested, the model was only trained with sentences
of length 5). Language experience was assessed by conducting separate
simulations given m= 1000, 2000, 3000… 1,000,000 sentences stored
in memory. Average performance was assessed by resampling the sen-
tences selected 25 times to ensure that the results were not conditional
on a particular record of language experience.

Although it is difficult to map model experience onto developmental
trajectories, the corpus size used to train the model is likely a fraction of
what a typical adolescent or adult would have experienced. Studies
indicate that a typical student should experience around 12 million
word tokens a year just from spoken language alone (Brysbaert,
Stevens, Mandera, & Keuleers, 2016; Mehl, Vazire, Ramírez-Esparza,
Slatcher, & Pennebaker, 2007). Given an average sentence size of
roughly 13 words per sentence (Johns et al., 2019), this gives a con-
servative estimate that people hear roughly a million sentences a year.
The maximum number of training used in the below simulations is a
million sentences, so corpus size is well within realistic levels of ex-
perience.

Two measurements of performance

We measured sentence-completion performance two ways. The first
method tallied the percentage of tests in which the model’s most pre-
ferred word order corresponded to the original sentence. The second
ranked the model’s decisions for all possible word orders from first (i.e.,
most similar to the order vector in the echo) to last (i.e., least similar to
the order vector in the echo) and, then, recorded the rank at which the
original input sentence appeared. For example, if the model was given
“eat your dinner” it would produce a rank order of all six possible
sentences composed of the three input words. If “eat your dinner” was
the third preferred word order, the trial would be scored as a rank 3
decision.

In summary, the first measure was an absolute index of model
performance, as if the model (like an experimental subject) provided a
single response for each test sentence. The second measure offers a
more nuanced assessment: it measures how close the model was to
making the right decision whether its first choice matched or did not
match the exact word order in the test sentence.

Discussion

The IPM provides a simple framework for examining the power of
past experience in sentence production. It uses the BEAGLE framework
(Jones & Mewhort, 2007; Johns & Jones, 2015; Recchia et al., 2015) to
generate instances of sentences. To retrieve the latent ordering of a set
of words, its retrieval mechanism was inspired by Hintzmans’s (1986)
MINERVA 2, and it used Jamieson and Mewhort’s (2009, 2010, 2011)
method for explaining artificial grammar learning, Johns and Jones’s
(2015) technique for examining sentence comprehension, and Jamieson
et al.’s (2018) model of lexical semantics. Thus, it integrates a growing
body of research on the importance of instance memory on language
processing. To generate the ordering of a set of words, every possible
ordering is tested by its similarity to the latent ordering, with the most
similar being what is produced.

The goal of the first set of simulations presented below is to de-
termine the IPM’s capability at producing grammatically correct sen-
tences, given no higher-level information. The model depends almost
completely on experience. The ordering produced for a sentence is
based on the ordering seen in the past. If the model is capable of im-
posing structure on a set of words at a highly accurate degree, it follows
that experience with language combined with similarity based and
parallel retrieval of that experience is sufficient to explain at least some
aspects of language usage independent of higher-order grammatical
information. The goal of the second set of simulations is to demonstrate
that the model can also account for standard behavioral effects of
structural priming on language production. Overall, the goal of the
combined simulations is to provide an existence proof that an instance
model can account for aspects of complex linguistic phenomena
without the need for higher level grammatical knowledge to be built
into the model.

Production simulations

Ordering test sequences

Before examining the model’s overall performance across different
sentence lengths, we first determined the optimal and most parsimo-
nious combination of lexical features to form memory instances. Six
different combinations of lexical features were tested – location, bi-
gram, and trigram bindings by themselves, plus location + bigram,
location + trigram, and location + bigram + trigram. The model was
tested on sentences of five words, and was trained with 1,000,000
sentences. For five-word sentences, there are 120 possible combinations
for the model to discriminate among, making this a non-trivial test of
the model’s discriminative capabilities.

Table 1
Example of test sentences.

Length Sentence

3 She was crying.
It sounds better.
I felt dreadful.

4 She held her breath.
I’m out of here.
They ruined his life.

5 He took a deep breath.
Let me tell my story.
My heart was beating fast.

6 I’ll meet you at the house.
I had no intention of offending.
People stared at me in silence.

7 He had never seen anything like it.
I’m not going to stand for it.
I’d never seen such an ugly cat.

2 All test sentences can be found at http://btjohns.com/experience_sents.zip.
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The results are displayed in Fig. 1 for both correct production (i.e.,
how often the sentence produced the correct ordering) and ranking
(i.e., the rank of the correct sentence in the distribution of all sentences,
with zero being the sentence ordering that was selected) performance.

As shown in Fig. 1, location binding is the best performing in-
formation source, suggesting that where a word occurs in a sentence is
an important source of syntactic information. The result is consistent
with past results from distributional semantic modeling (Sahlgren,
2006; Recchia et al., 2015), and is important because it can be easily
encoded within the BEAGLE framework. In addition, note that the
model’s best used location + bigram information for both the pro-
duction and ranking assessments; the inclusion of trigram information
did not provide an increase in performance. In the following simula-
tions, the location + bigram model will be used to form sentence in-
stances, given that it is the simplest and best performing combination of
lexical sources.

As discussed previously, the IPM’s production mechanism searches
through each possible combination of words in order to choose the most
likely ordering, given the model’s past experience. This leads to a
combinatorial problem. For sentence lengths 3, 4, 5, 6, and 7 there are a
respective 6, 24, 120, 720, and 5040 combinations of the words in those
sentences. Thus, the scale of the search problem grows with sentence
length, providing an increasingly discriminative test of model’s per-
formance.

Fig. 2 shows both the production performance and ranking mea-
sures as a function of sentence length. The model generated the correct
ordering of a sentence at a high rate of success at all sentence lengths,
ranging from 92% correct (chance = 16.7% correct) for three-word
sentences to 76% correct (chance = 0.02% correct) for seven-word
sentences. The correct-ordering data demonstrate that the model does
have the ability to construct sentence ordering, even without any
higher-level grammatical information built into the model. The ranking
data shows the ability more directly: the average ranking of a sentence
is directly correlated with the number of possible combinations of a
sentence. Given that the model is able to generate the correct ordering
of a sentence at such a high rate of success across sentence length, the
ranking data demonstrate that an instance model can serve as a

powerful basis for understanding sentence production.
A second important consideration for the IPM’s performance is the

model’s performance across learning. Hence, the model’s performance
across sentence lengths was assessed every one thousand sentences, up
to the limit of one million sentences studied. The results for both the
performance and ranking data are contained in Fig. 3.

Fig. 3 shows that the vast majority of the model’s increase in per-
formance happens with relatively little linguistic input (i.e., less than
fifty thousand sentences), with small increases occurring after this
period. The point is especially clear in the ranking assessment. It fol-
lows that linguistic input must be structured so that a relatively sparse
sample of language can support highly syntactically structured lan-
guage production, with small changes occurring later in learning
(especially for longer sentence lengths).

It is worth noting that the model’s performance may be greater than
is reported here. Some sentences have several equally valid syntactic
constructions. For example, the model preferred “they quietly went
down the stairs” when tested on “they went quietly down the stairs.”
Although the model did not produce the input sentence, it nevertheless
generated a syntactically valid alternative.

To better understand model behavior across learning, consider
Table 2 that shows the model’s output across learning for seven dif-
ferent six-word sentences. As shown, there is variability in how fast the
model learns the correct ordering. For example, the model produced the
correct ordering of the sentence “you poked him in the eye” after en-
coding 28,000 instances to memory but needed 336,000 instances to
produce the correct ordering of “the man was suffering from depres-
sion.” This likely has to do with the frequency of the occurrence of
words in the database and thus memory. Table 2 also shows that the
model can produce sentences that are grammatically correct (or nearly
correct). For example, given less language experience, the model pre-
ferred “the boy was a good dog” and “the man from depression was
suffering” before hitting on the correct ordering of those sentences.

Fig. 4 shows a quantitative examination of model performance
across instance learning that plots the average similarity of the different
sentence constructions for the correct ordering and the possible alter-
natives for sentences of four words (four word sentences were chosen to

Fig. 1. A comparison of model performance using different combinations of lexical information sources on two tests – proportion correct (top panel) and rank of the
correct sentence (bottom panel). The resulting simulation shows that the most parsimonious model is locative information combined with bigram information.
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aid visualization) given 1000 sentences are encoded to memory (top
panel) versus 20,000 sentences encoded to memory (bottom panel). As
shown, as the model encodes a greater number of instances, the correct
ordering becomes increasingly more activated relative to the alter-
natives. However, even when a mere 1000 sentences are encoded to
memory, the correct ordering has a greater level of activation; a result
that suggests the redundancy of language emerges early in the re-
cording of experience.

Comparison to alternative base-rate model

One way to put the results into context is to compare the model’s

performance to a standard statistical language model, a bigram model.
In a bigram model, the probability of producing word Wn when pre-
ceded by word Wn-1, is calculated as:

=−
−

−

P W W P W W
P W

( | ) ( , )
( )n n
n n

n
1

1

1 (6)

That is, it is the probability of word Wn being produced following
word Wn-1. To generate the most likely ordering of a set of words, we
used the same procedure as the IPM: The different permutations of a set
of words was generated, and the most probable ordering was selected
by choosing the ordering that maximized the probability equation:

Fig. 2. Results of the IPM on sentences of lengths three to seven, on the two tests of model performance.

Fig. 3. The time course of model performance. This simulation demonstrates that most of the change happens with very few lexical experiences (< 100,000), with
small improvements for subsequent instances.
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Put differently, the bigram probability of each ordering was calcu-
lated, and the most probable ordering was selected.

To assess the simple bigram model, its performance was compared
against the IPM’s performance and against the IPM with only bigram
information encoded. The IPM bigram-only model was tested to assess
what the additional information is contributed by the IPM’s retrieval
mechanism, over and above the direct statistics contained in the lan-
guage source.

Fig. 5 shows the results of this simulation for both production and
ranking scores. As shown in Fig. 5, both the IPM and IPM-bigram
models significantly outperformed the standard bigram model, espe-
cially at longer sentence lengths. The IPM’s ability to outperform the
bigram model signals that the instances contained in memory contain
more than just lexical statistics about the correct ordering of sentences.
Particularly, the ability to efficiently encode locative and bigram in-
formation into a single instance representation allows for rich in-
formation about the likely ordering of a set of words to be retrieved.
Additionally, the preferential activation of traces that contain some of
the words in a to be produced utterance, but not all of the words, allows
for some constraints on the ordering of a sentence. For example, if the
model was asked to construct the sentence “the girl ran away” and the
model had processed the sentence “the girl ran home” previously, the
already processed sentence is not identical, but still provides con-
siderable constraint to the likely ordering of a sentence. That is, the
retrieval mechanism does not just return noisy bigram information;
rather it includes extra-item information that allows for better order
construction.

Table 2
Example of model output across training for different sentences of six words.

Memory Size Model Output

1000 Dog the good was a boy.
4000 The boy dog was a good.
37,000 The boy was a good dog.
172,000 The dog was a good boy.

1000 Smells like to me it trouble.
8000 Smells like it to me trouble.
32,000 Like trouble smells it to me.
183,000 It smells like trouble to me.

1000 He had no dying of fear.
9000 He had dying of no fear.
44,000 He had no fear of dying.

1000 Home bring we to her need.
15,000 Home need we to her bring.
88,000 Home we need to her bring.
155,000 We need bring to her home.
164,000 We need to bring her home.

1000 The poked in you eyes him.
5000 The him in you eyes poked.
28,000 You poked him in the eyes.

1000 Suffering depression was from the man.
19,000 Suffering man was from the depression.
236,000 The man from depression was suffering.
336,000 The man was suffering from depression.

1000 Offending I had no intention of.
83,000 I had no of offending intention.
101,000 I had no intention of offending.

Note. Correct sentence ordering in bold.

Fig. 4. A comparison of the relative activation levels of the correct ordering of a sentence and the possible alternatives at 1000 and 20,000 sentences recorded for
four word sentences. The similarity displayed in the figure is between the retrieved echo from the sentences context vectors and the order representation for the
correct ordering and the possible alternatives.
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Filling in missing words

Thus far, we have shown that the IPM can order words syntactically
based on past experience with language. But, can it also choose and use
function words to stitch together a sentence composed of given content
words? To test the possibility, we removed function words from test
sentences and determined the accuracy with which the model filled-in
the missing words (and the order of the words). The function words
used were the 15 most frequent function words from the corpus.3

Sentences of length 5 and 6 were taken from the previously used test
sentences. All sentences that included one or two function words were
retained. The model’s task was to construct a sentence that included a
set of content words and do so by selecting and using missing function
words. For example, if the model was given the test sentence “it smells
like trouble to me” the resulting cue would contain the words “smell
like trouble me” in an unordered list and it would need to both de-
termine the missing function words and sew the content words together
accordingly.

The fill-in manipulation increased the model’s combinatorial pro-
blem significantly, especially in the two-removed condition, as every
possible combination of the missing function words has to be tested. In
a five-word sentence, there are 15(5!) = 1,800 possible combinations
in a one-removed condition and 152(5!) = 27,000 combinations for a
two-removed condition. For the six-word sentences, there are
15(6!) = 10,800 combinations in the one-removed condition, and a
very substantial 152(6!) = 162,000 combinations in the two-removed
condition. Because the numbers of producible sentences are so large,
the chance of producing the target sentence by accident is very small.

Thus, the fill-in test provides a very discriminative assessment of the
IPM’s ability to find structure in experience. In the following simula-
tion, the function words were removed from the context vector, so that
the memory probe did not contain any information about the missing
words.

Fig. 6 shows the results as a function of both the performance and
ranking measurements. For the one-removed condition, performance
was approximately equal to the performance of the model on the sim-
pler ordering task used previously. That is, the IPM is eminently capable
of not only ordering words but also generating the correct function
word that completes a sentence.

The ranking data in this simulation did increase slightly compared
to previous simulations, reflecting the greater number of possible
combinations of words (this was also found in the two-removed con-
dition). In the two-removed condition, there was a definite decline in
the model’s performance (of approximately 7.5% for five-word sen-
tences and 13% in the six-word sentences). Nevertheless, the level of
performance is still quite high considering that the size of model’s
search set. The model was able to generate both the correct two missing
function words and ordering for sentences of six words at over 60% of
the time, even though chance in this condition was only 0.00067%.

Generalizing to another language

Given that we are claiming that instance memory provides a domain
general mechanism to account for language production, the IPM should
be able to generalize to another language. To test the power of the
model on another language, a corpus of novels in French language was
used (first described in Jones, Dye, & Johns, 2017). The corpus con-
tained 65 million words and is smaller than the English corpus used
previously. Hence, in the simulation, the model encoded up to 500,000
sentences. Using the French corpus, 200 sentences of sentence lengths

Fig. 5. Comparison of the IPM and IPM with bigram-only information compared to a standard bigram probability model. This demonstrates that the multiple types of
information encoded, and the retrieval mechanism, allow for the model to have an increased level of performance compared to a standard model type.

3 The set of function words used were: {the, to, of, and, a, in, I, that, you, for,
it, on, this, with, be, have, as, or, if, but}.
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3–7 were assembled.4 The model was then run using the same para-
meters as in the previous simulations with the English corpus.

Fig. 7 compares the results trained on the French corpus with the
results using the English corpus. As shown in Fig. 7, the results are
remarkably similar for these sentence sets, with the English version
performing slightly better for the shorter sentence lengths and the
French model performing slightly better for the longer sentence lengths.
The results suggest instance memory models are not tied to the statis-
tical patterns of English but also extend to at least one other language.
The demonstration points to universality.

Discussion

The above simulations demonstrate that an instance model, with
very limited assumptions about the nature of linguistic experience built
into the model, can take a set of words and generate the correct or-
dering for those words (across both English and French), as well as
generating missing function words in a sentence. The success of the IPM
points to the overall redundancy of the language environment, such
that the utterances that people use are not randomly constructed, but
instead contain significant overlap across instances. That is, even
though many utterances contain somewhat different structures, when
abstracted across thousands, tens or hundreds of thousands of sen-
tences, an instance model is capable of retrieving the grammatically
correct ordering of a sentence.

Even though the model is capable of this feat, it still does not reach
maximum performance at larger sentence sizes (which nearly all
speakers could almost always produce effortlessly). Additionally, the
sentence set used to test the model are of very simple constructions.
However, the above simulations offer an existence proof that an in-
stance model does seem to provide a basis for the construction of
grammatical sentences, even without any grammatical knowledge built
into the model. The next simulation set will demonstrate that the model

is capable of accounting for behavioral data from the structural priming
literature.

Structural priming simulations

Structural priming, as first discovered by Bock (1986), is the finding
that the syntactic constructions of previously processed sentences im-
pacts the syntactic construction chosen for a current utterance (for a
review, see Pickering & Ferreira, 2008). For example, if a person had
previously produced an active transitive sentence (e.g., “A janitor cleans
the floor daily”), they are more likely to use that same construction for a
future utterance (e.g., “A brick struck the car’s windshield”) rather than
an alternative construction (e.g., “The car’s windshield was struck by a
brick”; a passive transitive sentence). Structural priming has served as
an important development in the field of psycholinguistics (Dell &
Ferreira, 2016) and has been found to be a powerful and consistent
effect across many manipulations (Mahowald, James, Futrell, & Gibson,
2016).

In Bock (1986), subjects were made to produce sentences of a

Fig. 6. Results of the filling-in simulation, where the model had to generate both the missing function word/words and the resulting ordering of those words, greatly
increasing the number of possible orderings.

Fig. 7. Model performance when trained and tested on an English corpus versus
performance when trained and tested on a French corpus.

4 Sentences can be found at http://btjohns.com/french_sents.zip. Due to none
of the authors being completely fluent in French, sentences were attained by
finding sentences that occurred three different times across the corpus, ensuring
that the construction had been used by different authors.
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certain type (dative or transitive sentences) and were then given a
picture description task, where the subject had to provide a short sen-
tence describing the events taking place in the picture. It was found that
subjects were more likely to use the syntactic construction of a prime
sentence in the picture description task, compared to when the picture
was preceded by a prime of a different syntactic construction. Im-
portantly, the prime sentence had little thematic or meaning overlap to
the target sentence, meaning that the phenomenon seems to rely upon
previously used abstract representation of syntactic constructions in
language production.

As stated previously, the ability to account for structural priming is
a key evidence source for the use of SRNs in modeling language pro-
duction (Chang et al., 2006). The model of Chang et al. (2006) is of
significant complexity, and a full description of the model is out of the
purview of the current article. However, the conceptualization of the
model relies on the notion of syntactic adaptation to current language
input, where across lexical experience the syntactic constructions being
used in the environment are abstracted across time with a connectionist
network using error-driven learning. Due to this adaptation, the model
is more likely to utilize that syntactic construction in the future. It is
proposed that this adaptation is a form of implicit learning (Bock &
Griffin, 2000). Chang et al. (2006) demonstrated that this approach
could account for most of the major findings in the field.

The view of structural priming as abstracted implicit learning
echoes previously outlined arguments in the artificial language litera-
ture (e.g., Kinder, 2010; Jamieson & Mewhort, 2011), contrasting im-
plicit learning versus memory-based explanations. One of the main
arguments in structural priming pointing to the use of implicit learning
is the finding that structural priming occurs across significant time lags
(Bock & Griffin, 2000; Bernolet, Collina, & Hartsuiker, 2016). These
findings have been used to directly argue against the notion of a
memory-based explanation of structural priming (Bock & Griffin,
2000).

The goal of the following simulations is not to give a complete ac-
counting of structural priming in language production, but instead to
show that an instance memory model, trained on a natural language
corpus without any higher-level grammatical information being built
into its representation or processing assumptions (in contrast to the
approach of Chang et al., 2006), can in principle account for some of
the foundational results in structural priming. Additionally, we will
show that the processing assumptions of an instance model of structural
priming are coherent with the theorizing of usage-based (Abbot-Smith
& Tomasello, 2006; Tomasello, 2003) and adaptive (Beckner et al.,
2009; Christiansen & Chater, 2008) approaches to language processing.

In the simulations reported so far, the basic operation of the IPM
was to take a set of unordered words (as encoded in a context vector;
see Eq. (1)), and retrieve the likeliest ordering for those words through
the cueing of memory, akin to a cued recall operation. The con-
ceptualization of an instance model of language production lies in
usage-based theories (Tomasello, 2003; Abbot-Smith & Tomasello,
2006): in order to produce utterances that are comprehensible to others
in their environment, use a similar structure to the utterances that were
produced by others. The simulations so far have demonstrated that this
is a powerful approach to producing syntactically correct utterances.

However, it is difficult to see how structural priming could be ac-
counted for within this modeling framework as currently constructed,
given that the cue to retrieve syntactic structure (the context vector), by
definition, has no structure embedded into it. As previously stated, the
context vector should be considered as a communication intention, or
the meaning of what is wanting to be expressed. Structural priming is a
phenomenon demonstrating the local nature of language processing –
the linguistic context that one is embedded in impacts how one pro-
duces language. That is, how one expresses themselves is not tied to
internal motivations only, but also to information contained in the
external environment. From a usage-based perspective, the important
factors of the external environment are others that you are attempting

to communicate with. If one knows how others communicate in a
context, then one should attempt to communicate in similar ways.

Still, the question lies in how to adapt the IPM to local context.
Order vectors, as constructed with Eq. (2), encode how a sentence was
produced. If it is assumed that a short-term memory store holds order
information about the utterances being produced in a context, then
there is a natural mechanism by which local communicative context can
be naturally built into the retrieval mechanism of the IPM: by cueing
with both context and order vectors. If a context cue represents what is
supposed to be produced, an order cue represents how it should be
produced. By integrating an order cue into the retrieval operation, the
retrieved structure of an utterance can be biased towards certain con-
structions by using an order cue. The integration of multiple cues in the
retrieval process is consistent with other modeling efforts into syntactic
priming (e.g., Dosher & Rosedale, 1997; Ratcliff & McKoon, 1994).

A central tenet of modern theories of language is that they are
adaptive (Beckner et al., 2009). Only cueing with a context vector
means that the model is globally adaptive: the model produces lan-
guage based on the overall language statistics that the model has been
exposed to (see Dalton, 1993 for a discussion on global versus local
contextual features). However, by integrating an order cue based on the
current environment the model is embedded in, the model becomes
locally adaptive: the model will be biased towards producing utterances
using a similar construction to the utterances that others are using in
the current context. By this account, structural priming is not the result
of retrieved abstract syntactic representations in the brain, but by a
communicative need: to produce language like others in your current
environment are using language, and thus maximizing communicative
effectiveness, or maximizing linguistic adaptivity.

To integrate this retrieval mechanism into the IPM is simple: instead
of only taking the similarity between the context cue and context
memory trace (as was done in Eq. (3)), take the average of the similarity
between the context cue and context memory trace and the order cue
and the order memory trace. The resulting activation of a trace in
memory is thus a mixture of both the words that are trying to be pro-
duced and also the structure of previously processed sentences con-
tained in short-term memory. The information contained in the echo is
thus a reflection both of what is trying to be expressed and also how it
should be said to optimize local comprehensibility.

In order to integrate an order cue into the retrieval process, the trace
activation formula in Eq. (3) has to be modified:

=
+A S S oc m m( ( , ) ( , )
2

)i i λ
(8)

where c is the context cue and o is the order cue, and mi is the instance
in memory. All other aspects of the retrieval process were kept constant
with previous simulations.

Other retrieval cues could be used. For instance, the context and
order cue could simply be concatenated to form a single cue. However,
that would require normalization between differences in magnitude
between context and order vectors. Multiplicative similarity could also
be used to activate traces, but that would introduce different retrieval
dynamics. Average similarity provides a simple mechanism which is
reflective of the machinations used in the previous simulations of this
article.

Simulation outline

Most structural priming experiments use picture production tasks,
but simulating such a task is outside of the current model. Although
word-referent information can be built into the model (see Johns &
Jones, 2015 who simulated a number of visual world sentence pro-
cessing effects with a distributional instance model), the point of this
article is to determine how much complexity in human behavior can be
accounted for with a simple instance modeling framework.

Instead of simulating results using the procedures of picture
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productions like in Bock (1986), instead an alternative, and simpler,
procedure will be used in the following simulations.

Structural priming is found across a number of different experi-
mental setups. For example, Potter and Lombardi (1998) demonstrated
that similar results are found in sentence recall using rapid serial visual
presentation (RSVP) structural priming. In an RSVP task, words are
presented sequentially for a brief period of time, typically 100 ms per
word. After a brief intervening task, subjects are asked to recall the
sentence that they saw. Similar to the results of Bock (1986), previously
processed sentences impact the syntactic structure of the recalled sen-
tence (Potter & Lombardi, 1998; Chang, Bock, & Goldberg, 2003).

To approximate this setup, the following will be done. The order
representation of a prime sentence will be constructed with Eq. (2). This
vector will serve as the order cue. A context vector will be constructed
with Eq. (1), but with function words being removed. This will be the
context cue. The function words were removed from the context vector
to allow for a single cue to be used to differentiate different syntactic
constructions. Both the context and order cue will be used to retrieve an
echo vector, with instance activation calculated with Eq. (8). The echo
will be used to determine the preferred syntactic construction, based on
the cues and the information stored in memory.

Instead of using the production mechanism from the above simu-
lations, here a 2-alternative forced choice (2AFC) test will be given to
the model. Specifically, the order vectors of two possible syntactic
constructions were built (e.g., “The brick struck the car’s windshield”
versus “The car’s windshield was struck by a brick”). Then the simi-
larity between the two order vectors and the retrieved echo was com-
puted. Whichever order vector had the highest similarity to the echo
was chosen. The previously used production method cannot be used in
the following simulations because the length of some of the test sen-
tences were too long for it to be successfully applied, due to the number
of possible alternative constructions of longer sentences (e.g., for a
sentence of 12 words there are 479,001,600 possible orderings of those
words; see the General Discussion section for a more detailed ex-
amination of this problem). Given this combinatorial problem, it is not
the case that the selected sentence type from the 2AFC task is the one
most preferred overall by the model, but instead the selected sentence
will be the one it prefers between the alternatives within a particular
empirical manipulation.

In order to demonstrate how syntactic priming is being assessed in
this framework, Fig. 8 contains an outline of the simulation process. As
described, there are two cues used: (1) an order cue which contains the
order representation of a prime sentence and (2) a context cue which
contains the content words of a sentence to be produced. These cues are
jointly used to retrieve an order echo, which in turn contains latent

information about how the content words should be ordered. This echo
is used to differentiate between two different syntactic constructions of
the same content words. If the unrelated prime sentence contained in
the order cue (in this case, “the corrupt inspector offered a deal to the bar
owner”) exerts an influence on the retrieval process then the order echo
should be biased towards the alternative using the same syntactic
construction as the prime (in this case, “the lifeguard tossed a rope to the
struggling child”). If no syntactic priming is occurring in the model, then
there should be no bias towards either construction.

In the following simulations, it will be assumed that the cue or
priming information is kept in a different memory store than the in-
stance memory store, which will be akin to a short-term or working
memory store. The information contained in this store will bias the
production mechanism, based on the similarity of the to-be-produced
sentence and the previous sentences processed and stored in the short-
term memory store. Clearly this is a simplification, as there is no me-
chanism for consolidation of currently experienced sentences into the
instance memory store, for example. However, the current setup allows
for an existence proof that an instance model of language can account
for basic findings in syntactic priming, while future iterations of the
modeling framework will need to modify the model to account for the
flow of lexical information in both short- and long-term memory.

Previous simulations were trained on corpora with specific sentence
lengths. Due to the following simulations using sentences sets with
different number of words in them, this was not possible for the
forthcoming simulations. Thus, the models will be trained on sentences
of different sizes. Specifically, a corpus derived from fiction books
(Johns et al., 2019) will be used, with sentences of 6 to 13 words. Each
sentence length will have 500,000 sentences included in the corpus, for
a total corpus size of 4,000,000 sentences. In each individual simulation
contained below, unless otherwise specified, each model will have
100,000 sentences contained in memory. Each of the 100,000 sentences
were randomly sampled (meaning that in some samples a model could
have longer sentences encoded and some could have shorter sentences).
In order to overcome any issues to the randomness of the sentences
contained in a model’s memory, levels of priming were recorded across
50 resamples of the model’s environmental vector and randomized
sentence sets for each of the below simulations in order to get average
performance. Vector size was reduced to N = 1024 to limit the com-
putational costs of the model, unless otherwise specified.

Bock (1986). The first result simulated will be the classic results of
Bock (1986). In this study, two types of sentence constructions were
used: (1) either active transitive sentences (e.g., “One of the fans punched
the referee”) or passive transitive sentences (e.g. “The referee was pun-
ched by one of the fans”), or (2) prepositional dative sentences (e.g., “The

Fig. 8. A pictorial demonstration of the syntactic priming task given to the IPM. The order representation of a prime sentence is used as an order cue, while the
context cue is the summation of the content words needing to be produced minus any function words. The joint cues are used to retrieve an order echo, which is used
in a 2AFC task where the model has to differentiate between two possible syntactic constructions.
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secretary is baking a cake for her boss”) or double object dative sentences
(e.g., “The secretary is baking her boss a cake”). It was found that when
people were primed by a sentence of a certain construction (e.g., “The
referee was punched by one of the fans”), subjects were more likely to use
that construction for a semantically unrelated sentence (e.g., “The car’s
windshield was struck by a brick”) over an alternative construction (e.g.
“A brick struck the car’s windshield”).

To simulate this effect, the sentences were taken directly from Bock
(1986). For the dative sentences, there were 12 sentence pairs (one
using a prepositional construction, the other using a double-object
construction). For the transitive sentences, there were 24 sentence pairs
(one using an active construction, the other a passive construction).
Each of the dative sentences could act as a prime to another dative pair,
and likewise for the transitive sentence pairs.

To simulate syntactic priming, the process displayed in Fig. 8 was
used. In particular, two sentence pairs were selected. One sentence pair
will act as a prime, and one sentence pair will act as a target. The model
is then primed with one sentence construction (e.g., a prepositional
dative) from the sentence pair selected as a prime. For the target sen-
tence, all function words were removed to be used as a context cue (so
there is no bias towards either possible construction contained in the
context cue). An order echo is retrieved, then the model is given a 2AFC
task between the order representation for one syntactic construction
(e.g., a propositional dative) and the representation of a different syn-
tactic construction (e.g., a double object dative). The probability of
selecting the primed sentence construction was then recorded. The
process was then repeated using the other prime sentence (in this case,
the double object dative) as a prime, and again the probability of se-
lecting the primed sentence was recorded. To calculate overall level of
priming seen, these probabilities were assessed by priming each sen-
tence pair with all other sentence pairs (i.e., priming levels for each
sentence pair was assessed for the 11 other sentence pairs for the dative
sentences and 23 other sentence pairs for the transitive sentences),
across 50 resamples.

To ensure that any changes in priming performance in the model
was due to the prime construction, an unrelated priming condition was
also used, where 36 sentences were taken from Bock and Griffin (2000)
neutral prime sentence set.

The results of the simulation are contained in Fig. 9. The left panel
displays the probability of a prepositional dative construction being
preferred by the model when primed with an unrelated sentence, an
unrelated prepositional dative sentence, or an unrelated double-object
dative sentence, while the right panel displays the same data for the
active and passive transitive sentences. Given that the task is a 2AFC
task, the probability of selecting the double-object construction is the
compliment of the probabilities in the figure, and the same holds for
passive sentences in the right panel. This figure shows that even though
the prime and target sentences are semantically unrelated to each other,
when cued with an order vector of a certain construction type, the re-
trieved echo is typically more similar to the primed construction. Ad-
ditionally, there is a stronger effect for dative sentences compared to
transitive sentences, which is also reflected in the data from Bock
(1986). It is important to point out that the model that has no knowl-
edge of syntax whatsoever. Instead the latent retrieval across thousands
of instances of sentences produces structure that is coherent with what
looks like higher-order syntax.

One question resulting from this simulation is what effect the
number of sentences stored in memory has on the levels of priming seen
in Fig. 9. To test this, the level of priming seen from memory sizes 1000
to 25,000 was tested. Levels of priming was assessed for both the dative
and transitive sentence sets from Bock (1986). The priming level was
assessed by taking the difference between the probability of selecting a
propositional dative when primed with an unrelated propositional da-
tive versus an unrelated double-object dative across different levels of
memory storage, and vice versa for the double-object datives. An
equivalent analysis was done for active over passive sentences for the

transitive sentence set. The results of the simulation are contained in
Fig. 10. This figure shows that even at a low number of sentences (1000
sentences) there is still priming, which suggests that there are structural
similarities in the sentences of different grammatical categories that
allow for syntactic priming to occur. However, there is also a sub-
stantial increase in the level of priming that occurs across memory size.

Bock and Griffin (2000). As stated previously, an important em-
pirical result in structural priming is the finding that the effect is per-
sistent across multiple intervening sentences, as shown conclusively by
Bock and Griffin (2000). To simulate this effect, the dative sentences
from Bock (1986) were used. The neutral prime sentences from Bock
and Griffin (2000) were used as intervening sentences. The order cue
will no longer just be the representation from the prime word, but will
also contain the order vectors of up to 5 other sentences, simulating the
effect of intervening sentences on the retrieval process. All other aspects
of the simulation were kept identical to the previous simulation.

The assumption underlying this simulation is that short-term
memory utilizes a composite vector representation, where all items are
added into a single memory store. This assumption is made because of
the fact that the representational mechanisms of the IPM are based off
the architecture of the TODAM model of episodic memory (Murdock,
1982), which utilizes a composite representation of memory, where all
items are added into a single vector. In TODAM, forgetting is not as-
sumed to be due to decay of information within memory, but instead
due to interference from other items stored (see Mewhort, et al., 2018
for a recent discussion of this issue). From this perspective, the effect of
number of intervening sentences on priming is similar to retroactive
interference in episodic memory performance (e.g., Baddeley & Dale,
1966), which is the impact of newly presented information on the re-
membering of previously presented information. By comparing levels of
priming when there are no other sentences in memory to priming levels
as other sentences are added into the memory, it signals the impact of
retroactive interference on syntactic priming in the model. If the ad-
dition of other sentence forms into the short-term memory store elim-
inates priming it would signal that the model is not resilient to the
presence of other syntactic forms in memory, inconsistent with em-
pirical data. However, if the model is not overly impacted by the ad-
dition of other sentence forms into memory, it would demonstrate that
the model is retaining information in memory about a prime, even
though other information has been added into it, one of the benefits of
using distributed representations (Kelly, Mewhort, & West, 2017).

The results are displayed in Fig. 11, which shows that the amount of
priming does decrease as an effect of the number of intervening items,
but it is far from eliminated. This demonstrates that although the model
is influenced by intervening items in memory, there is a residual effect
of the prime sentence on retrieval. This result signals that the addition
of other sentence representations into the short-term memory store
does degrade the representation of the prime in memory somewhat, but
it is not eliminated, and the model still shows considerable amounts of
priming even with the addition of five other sentences into memory.

One related aspect of the model that has not been tested so far is the
impact of vector size on model performance. This seems a particularly
important manipulation for the current test of model performance as
the storage capacity of a vector could impact the resolution of the prime
sentence in memory. Given that there is no in principle way of de-
termining the correct vector size for the model (indeed, larger vector
sizes do not always lead to better model performance; Landauer &
Dumais, 1997; Jones & Mewhort, 2007), the amount of priming across
different vector sizes was computed. Since circular convolution uses fast
Fourier transformations in its computations (Plate, 1995), vector size
has to be a power of two. All vector sizes between 128 and 4096 were
tested. To calculate priming size, the average level of priming was
calculated by computing the difference in probability in the model se-
lecting the prepositional construction when primed with a prepositional
sentence versus a double-object sentence, and vice versa. The resulting
calculation signals the overall difference in levels of priming for the two
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primes. Fig. 12 plots the results of this simulation when there are five
intervening sentences in memory, and shows that the impact of the
prime on construction selection is related to the vector size that is se-
lected. Larger vector size allows for more retention of probe structure,
leading to larger amounts of priming even with a substantial number of
other sentences in memory.

However, one alternative explanation of Fig. 12 is that larger vector
sizes cause more priming overall. That is, it is not the greater level of

prime retention that is causing the differences seen in Fig. 12, but in-
stead that the model has an overall increase in the level of priming as
vector size is increased. To test this possibility, priming levels from
vector sizes of 1024 and 4096 were contrasted with 0–5 intervening
sentences placed into memory. If there is an overall greater level of
priming for the larger vector size at each level, then it would signal that
the larger vector size is causing an overall increase in priming. The

Fig. 9. Simulation of Bock (1986). This figure displays the probability of selecting the prepositional construction (left panel) or active construction (right panel),
given different cues. In this simulation, the model is given a 2AFC task, so the probability of selecting a double object construction in the left panel and passive
construction in the right panel is the complement of the displayed probabilities. Error bars are standard error derived from model performance from fifty resamples of
the model’s environmental vectors and prime-target pairs.

Fig. 10. The impact of the number of sentences contained in memory on levels
of priming for both dative and transitive sentences from Bock (1986). Fig. 11. Simulation of the effect of intervening sentences on levels of syntactic

priming in the IPM. Although the inclusion of intervening items in memory does
decrease the size of priming, it is not eliminated. Error bars are standard error.
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results of the simulation are contained in Fig. 13, and shows that the
priming between the two vector sizes are equivalent when there are no
other sentences in memory, but that the larger vector size maintains
priming levels across the number of intervening sentences better than
the smaller vector size. This result demonstrates that it is the greater
retention of prime information at larger vector sizes that is causing the
greater level of priming. The ability of the model to be resistant to the
impact of intervening items is likely due to the nature of the distributed
representations that the model employs (see Franklin & Mewhort, 2015;
Jones & Mewhort, 2007; Kelly, Mewhort, & West, 2017; Mewhort et al.,
2018).

Lexical boost

A consistent finding in the structural priming literature is the lexical
boost phenomenon, where the presence of lexical overlap (typically
through the prime and target sentence using overlapping verbs) leads to
larger amounts of priming (Branigan, Pickering, & Cleland, 2000;
Pickering & Branigan, 1998). This finding suggests that people are more
likely to use a previously processed construction if there is word overlap

between that construction and the current words being produced. This
finding is a natural data type for the IPM to explain since the inclusion
of overlapping words in the cue should preferentially active instances
using that verb in that structure.

To simulate this finding, sentences were taken from Rowland,
Chang, Ambridge, Pine, and Lieven (2012). Rowland, et al. assembled
sentence sets for six verbs. The sentence set used in the following si-
mulation was the sentence set not using proper nouns, which consisted
of twelve sentences that could have either a prepositional dative or a
double-object dative construction. Thus, for each verb there were four
sentences – two prepositional datives and two double-object datives.
Each sentence served as a target, and were equally primed by both
constructions. Prime sentences were either a randomly selected sen-
tence using a different verb (mismatching verb condition), or the un-
related sentence with the same verb (matching verb condition). For
example, for the target sentence “The boy passed the girl a fish” could be
primed by the sentence “The king threw the queen a rabbit” in the mis-
matching condition, and the sentence “The king passed a baby to the
queen” in the matching condition. Since the Rowland, et al. study is a
developmental one, the sentences are relatively simpler than the pre-
vious sentence sets used. Thus, to keep model performance from being
at ceiling, 10 intervening sentences (neutral prime sentences from Bock
& Griffin, 2000) were added into the order cue. All other simulation
details were kept equivalent. Priming levels were assessed by taking the
difference in the level of priming when there was a matching versus a
mismatching verb. That is, the difference in the level of priming was
assessed when the prime was a prepositional dative with a matching
verb versus a prepositional dative with a mismatching verb. The
equivalent measure was assessed for the double object datives, and the
level of priming observed for the two sentence types were collapsed
together to show an overall level of priming when a mismatched and
matched verb is used.

Results of the simulation are contained in Fig. 14. This figure shows
that there are still high levels of priming when using a mismatching
verb, consistent with previous simulations showing structural priming
even without verb overlap in sentences. However, the inclusion of an
overlapping verb significantly increases the amount of priming. This
demonstrates that the inclusion of a verb in both the context and order
cue provides complementary environmental information about the
correct construction to use, leading to an incremental increase of the
similarity between the retrieved echo and the representation of that
construction.

Fig. 12. Effects of vector size on the amount of structural priming when there
are 5 intervening sentences in memory. Larger vector sizes allow for more
prime information to be retained in short-term memory, leading to larger
priming effects, even with a significant amount of interfering information in
memory.

Fig. 13. A comparison of levels of priming across number of intervening sen-
tences for vector sizes of 1024 and 4096.

Fig. 14. Simulation of the lexical boost in structural priming using sentences
from Rowland, et al. (2012). This figure shows that there is a small but con-
sistent increase in the level of priming when the prime has a matching verb with
the target sentence.
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Chang et al. (2003). So far, it has been demonstrated that the IPM
can account for structural priming at the sentence level, where cueing
memory with the order vector of an unrelated structure causes that
structure to be retrieved from memory more readily. However, struc-
tural priming has also been demonstrated within a single sentence
construction as well. Specifically, Chang et al. (2003) conducted a
sentence recall experiment using spray-load alternation sentences
(Anderson, 1971). In a spray-load sentence (e.g., “The farmer heaped
straw onto the wagon”), the theme is the object that moves (straw) and
the location is where that object is moved (wagon). With the spray-load
alternation, sentences can either by theme-location ordered (e.g., “The
farmer heaped straw onto the wagon”) or location-theme ordered (e.g.,
“The farmer heaped the wagon with straw”). Chang et al. (2003) used an
RSVP structural priming task, where subjects read briefly presented
spray-load sentences that were theme-location or location-theme or-
dered, then were given a distraction task. Subjects were then asked to
recall the studied sentence. When primed with an unrelated sentence
with a different ordering, subjects would occasionally recall the studied
sentence with the prime ordering, rather than the actual ordering.

To simulate this finding, the spray-load sentences from Chang et al.
(2003) were used. The sentence set included 32 sentences that could
have either a theme-location or location-theme ordering. To simulate
this finding, the order cue included a prime sentence (a randomly se-
lected sentence in either a theme-location or location-theme ordering),
the studied sentence, and random Gaussian noise (with the same
properties as the environmental vectors for words, but with a mean of
2.0). The noise is assumed to take the place of the distractor task in the
experimental setup. The context cue is the studied sentence, minus
function words, equivalent to previous simulations. The similarity be-
tween the retrieved echo and the theme-location and location-theme
ordering of the studied sentence was taken, and the ordering with the
highest similarity was selected. All other simulation details were kept
the same as previous simulations.

The results of the simulation are contained in Fig. 15. This figure
shows that when the model is primed with an unrelated sentence that
had a different theme and location ordering than the studied sentence,
the model preferred that ordering to the studied ordering on a small
percentage of trials, consistent with the data from Chang et al. (2003).
This simulation demonstrates that the model can account for both
priming results across syntactic constructions, and also the ordering of
information within sentences, consistent with empirical findings.

Discussion

The simulations contained in this section demonstrates conclusively

that an instance model provides a promising modeling framework for
accounting for structural priming. Although the model is not as devel-
oped as the model of Chang et al. (2006), it also does not make any
assumptions about abstracted linguistic information. Instead, the model
relies upon the latent structure contained in a retrieved vector across
thousands of individual instances of natural language. Additionally, it
calls into question the notion that structural priming is a form of im-
plicit learning, and that it is not memory based. The ability of the IPM
to account for structural priming by simply using a short-term store of
recently used language demonstrates that a memory-based explanation
of this phenomenon does work.

Additionally, the success of the model naturally fits into usage-based
and adaptive approaches to language processing. Specifically, in order
to account for structural priming, the IPM proposes that in order to
optimize communicative effectiveness, one should communicate like
others are communicating in the current context. The model’s context
cue is a representation of what needs to be communicated, while the
order cue provides information about how it should be structured
(based on how others are communicating in context). Instead of a build-
up of abstracted syntactic information in memory to account for
priming, the IPM proposes that priming is an example of the adaptivity
of language, where people use the structure of the current context to
retrieve language that is structured in a similar way to how language in
our current communicative environment is structured.

General Discussion

Natural languages are defined by productivity and regularity. They
are capable of producing an infinite number of different utterances,
with all the utterances having a consistent structure. To account for
these aspects of language, many have proposed that a formal grammar
is necessary. A formal grammar is a top-down mechanism that seeks to
understand language processing in light of abstract categories. Our
approach, illustrated with the Instance Production Model (IPM), sug-
gests that ordering need not depend on application of grammatical rules
but rather depends on the structure of past utterances that one pre-
viously experienced. Under this approach, past experience informs and
constrains future behavior. The IPM was designed to exploit the pro-
ductivity and regularity of natural language, in order to illustrate the
power of experience in producing grammatical utterances.

It is not an analysis or encoding of a single utterance that provides
the knowledge needed to produce syntactic utterances; instead, it is the
overlap in the usage of language. Even though no two utterances may
be identical, the structure of a language emerges as a function of re-
corded instances in the act of cue-driven parallel retrieval from
memory. The regular, but not identical, structure of studied utterances
affords grammar-like behavior, albeit without an actual grammar.

The IPM is a simple model that encodes pure location and linear n-
gram information to encode an instance of a sentence. A classic instance
memory retrieval operation, grounded in principles of MINERVA 2
(Hintzman, 1986, 1988), is used to construct the likely ordering of a
sentence. Every possible ordering of a sentence is tested, with the or-
dering that is most similar to the expected structure being the one that
is produced. There is no higher-level processing integrated into the
model, and so the behavior of the model is entirely experience-depen-
dent. In that sense, the theory is perfectly continuous with previous
efforts to build an instance-based model of language learning and
comprehension using the same mechanisms and ideas, especially from
the usage-based perspective (see Abbot-Smith & Tomasello, 2006;
Johns & Jones, 2015). However, there are some differences in the de-
tails of the current and previous models that need to be resolved before
a complete integration of the two is realized. We take the problem of
that integration as a challenge that would move toward the kind of
model needed to generate a complete picture of how an instance-based
model of memory can serve as a valuable competitor in the discipline’s
pursuit of a theory of integrated models of language comprehension and

Fig. 15. Simulation of the results from Chang, et al. (2003), demonstrating that
the model can account for priming of within sentence orderings.
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production.
The model successfully constructed the correct ordering of simple

sentences of lengths 3–7 to a high degree, with a small linear drop in
performance as sentence length increases. Additionally, the model was
able to fill-in missing function words (and also determine the correct
ordering of those words, a task which vastly increases the search size of
the problem), and generalize to a different language.

However, the really interesting part of the model’s behavior is the
performance of the IPM as a function of the number of instances it has
studied. Performance rapidly improves with the first 50,000 sentences
studied, but then sees only small improvements as additional sentences
are stored. This provides a look into what the regular nature of lan-
guage provides to the act of productivity: even with a small range of
linguistic experience, the syntactic regularities in language become
apparent. Language is far from random and its redundancy allows a
simple model that capitalizes on redundancy to construct syntactically
correct sentences without any higher-level processing. As more in-
stances are stored, the overlap in structure of the sentences emerges
(due to the productivity of language), which allows for the model to
exploit the combinatorial nature of language usage.

Additionally, the ability of the model to account for structural
priming data illustrates that the cued retrieval technique that the model
utilizes is able to retrieve syntactic structure. It also demonstrates that
the model is capable of accounting for various empirical examinations
into language production. Importantly, it is able to do so without any
assumptions about stimuli – sentences were taken directly from the
studies without any need to manipulate them, one of the advantages of
using corpus-based models of cognition (Johns et al., 2020). The
structural priming simulations also further demonstrated the connec-
tion between instance models and theoretical perspectives within the
language sciences, particularly usage-based (Tomasello, 2003) and
adaptive (Beckner et al., 2009) approaches, as the underlying con-
ceptualizing of syntactic priming that the model proposes is based on
increasing communicate effectiveness through adaptation to local lin-
guistic context.

Nevertheless, the instance-based approach to language has chal-
lenges. For example, the model might be charged with operating at the
wrong level of analysis – phrases may be the right unit of language
traces rather than whole sentences, as is the typical case in generative
linguistics. Sentences then can be constructed by determining the cor-
rect order of phrases, integrating higher-level information into the in-
stance construction process. This would also allow the model to operate
with a smaller number of words; advantageous in terms of computa-
tional efficiency. It would also allow for the model to be tested on
longer sentence lengths, as using the production mechanism described
here quickly runs into a combinatorial problem. By constructing in-
stances at the phrase level, the same production mechanism could be
used while reducing the computational requirements.

A related issue with the model concerns its encoding scheme. In the
simulations presented, memory was populated with sentences of the
same length as the test sentences. Model performance is influenced by
this because it reduces the impact of word location information, which
Fig. 1 demonstrates is an important information source for the model.
More research is required to determine the best mechanism to encode
location in a relative fashion, where sentences of different lengths are
included in the same retrieval process. Moving to encoding at the
phrase level could alleviate these issues, as phrases are typically much
shorter than full sentences. However, breaking sentences into phrases
would require integrating grammatical knowledge into instance con-
struction. The inclusion of grammatical class information, such as the
ability to form a hierarchical representation of a sentence by parsing
noun and verb phrases would undoubtedly improve the performance of
the model, and allow it to process more complex sentence types.
However, it would also significantly increase the amount of linguistic
knowledge that is being built into the model, which was intentionally
avoided in the simulations reported in this article, in order to

demonstrate the base power and usefulness of an instance approach to
language production. Thus, future modeling efforts will need to balance
model performance with model complexity.

However, these problems arise because of the approach’s simplicity,
which is also its most promising feature. There is very little built into
the machinery of the model, and it still operates at a high level of
performance. It provides a promising framework to examine language
production and comprehension from a bottom-up point of view and
allows for an examination into the power of experience in explaining
linguistic behavior. That is, the IPM is not a complete explanation of
how humans are capable of producing language, as there are many
phenomena that are beyond the model’s current abilities. Instead, the
results reported here are an existence proof of sorts, demonstrating that
an instance model with very little complexity built into it can explain
complex linguistic phenomena. Future work will need to determine
what else needs to be built into the framework to allow it to be a more
complete model.

In closing, we wish to comment on how the work speaks to two
larger issues: the evolution of language and the relationship between
our understanding of language and human memory. Christiansen and
Chater (2008) present a framework of language evolution in which
language evolved by overtaking or using other cognitive systems, which
includes memory processing. Our results lend credence to this theore-
tical approach. The IPM uses standard memory processing techniques
(Hintzman, 1986, 1988) to generate complex linguistic behaviors. Use
of techniques that have been developed in the memory field can be
readily applied to solve problems within language processing (Jamieson
& Mewhort, 2009, 2010, 2011; Jamieson et al., 2018; Johns & Jones,
2015). The opposite is also true, where language processing models can
be integrated into memory models to provide content for a memory
model to utilize (Johns & Jones, 2010; Johns et al., 2012; Mewhort
et al., 2018). That is, memory and language processing are not separate
systems, and theories in both fields can be enhanced by examining the
types of formal mechanisms that allow for an increased integration of
the two cognitive processes.
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