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Abstract

Distributional semantic models (DSMs) specify learning mechanisms with which humans construct a deep representation of
word meaning from statistical regularities in language. Despite their remarkable success at fitting human semantic data, virtually
all DSMs may be classified as prototype models in that they try to construct a single representation for a word’s meaning
aggregated across contexts. This prototype representation conflates multiple meanings and senses of words into a center of
tendency, often losing the subordinate senses of a word in favor of more frequent ones. We present an alternative instance-based
DSM based on the classic MINERVA 2 multiple-trace model of episodic memory. The model stores a representation of each
language instance in a corpus, and a word’s meaning is constructed on-the-fly when presented with a retrieval cue. Across two
experiments with homonyms in both an artificial and natural language corpus, we show how the instance-based model can
naturally account for the subordinate meanings of words in appropriate context due to nonlinear activation over stored instances,
but classic prototype DSMs cannot. The instance-based account suggests that meaning may not be something that is created

during learning or stored per se, but may rather be an artifact of retrieval from an episodic memory store.
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Introduction

Distributional semantic models (DSMs) such as BEAGLE,
HAL, LSA, and Word2Vec represent a major advance in the
field of semantic memory (Jones and Mewhort 2007; Lund
and Burgess 1996; Landauer and Dumais 1997; Mikolov et
al. 2013). DSMs attempt to explain how humans transform
first-order statistical experience with language into deep
knowledge representations of word meaning. They predict a
broad class of behavioral phenomena and have been used to
develop cognitive technologies for a number of applied prob-
lems (e.g., Aujlaetal. 2018; Bedi etal. 2015; Foltz et al. 1999;
Johns et al. 2013; Rubin et al. 2016a, b). The mechanisms
posited by DSMs to transform episodic experience to semantic
representations vary widely, ranging from simple co-
occurrence counting to error-driven reinforcement learning
(see Jones et al. 2006, for a review).
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Virtually, all DSMs share one commonality: They are pro-
totype models. That is, the representation of a word is col-
lapsed into a single averaged representation. This shared char-
acteristic may represent a significant architectural flaw in
DSMs, leading the field to assume that semantic abstraction
is a learning mechanism rather than a retrieval mechanism.

All current spatial DSMs use the co-occurrence regularities
of words across contexts in language to build a single vector
representation that best represents the word’s aggregate mean-
ing, formalizing the classic notion that, “you shall know a word
by the company it keeps” (Firth 1957). However, the notion of
building a single prototypical center of tendency disagrees with
the current state-of-the-art in related fields of cognition, such as
categorization and episodic memory. The categorization litera-
ture, for example, has largely converged on the superiority of
exemplar-based theories over prototype theories because pro-
totype theories cannot explain human behavior when dealing
with category structures that have nonlinearly separated struc-
ture, such as in classic XOR. Even if linear category structures
are used that should be optimal for prototype models, exemplar
models produce a superior quantitative prediction of human
data (e.g., Stanton et al. 2002).

Jones (2017) has recently suggested that current
“abstraction-at-learning” DSMs suffer from the same issues
as prototype theories in categorization, a problem that arises
from collapsing the many contexts in which a word occurs to a
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single best-fitting representation. Doing so discards idiosyn-
cratic regularities that are important to word meaning. Here,
we argue that homonyms present an ideal method to define
and evaluate the potential shortcoming.

It has long been known that spatial DSMs collapse the mul-
tiple senses of a homonym into a single representation, averag-
ing over different and distinct context patterns to derive a center
of tendency that represents the word’s average meaning. For
example, a homonym such as bark is positioned in semantic
space as a frequency weighted average of its distinct senses
(e.g., the sound a dog makes versus the outer shell of a tree).
This is a graded problem across the continuous modulations in
meaning that are inherent to polysemous words as well. Jones
suggests that this behavior is not a simple problem that can be
handily solved with a patch in abstraction-at-learning DSMs,
but rather indicates that the models may be fundamentally
wrong in how they conceive of semantics. In short, although
they can represent the average meaning of a word, they do so at
the cost of being able to represent meanings that differ from the
average (e.g., rare senses of homonyms and polysemes), a be-
havior that is rapid and natural to humans.

In this paper, we develop and test an alternate notion of
abstraction in a DSM. Building on established and successful
instance-based episodic memory models, like Hintzman’s
(1984, 1986, 1988) MINERVA 2 model of memory, we posit
that semantic abstraction may be a consequence of retrieval
from episodic memory rather than a learning mechanism. To
make the case, we developed and tested an instance-based
theory of semantics that stores word contexts as multiple
traces in episodic memory and derives meaning on-the-fly at
retrieval.

In contrast to abstraction-at-learning DSMs, an instance-
based model can produce nonlinear activation of stored in-
stances, which allows it to access the subordinate sense of a
word when provided the appropriate cue (e.g., bank as in the
sense of turning a plane rather than bank in the sense of finan-
cial instructions). The model is able to account for traditional
phenomena that have been used as support for DSMs. But, it
can also explain patterns of responses to subordinate mean-
ings of a word in context that are difficult to account for with
traditional DSMs, and to do so without the requirement for an
explicit store for semantic memory per se. We demonstrate the
model using an artificial language corpus and, then, using a
natural language corpus.

“Abstraction-at-Learning” DSMs

The vast majority of spatial DSMs assume that semantic ab-
straction is a learning mechanism, and the task of the model is
to collapse across idiosyncratic linguistic episodes to derive a
stable prototypical representation of the word’s meaning. The
classic example is seen in Landauer and Dumais’ (1997) latent
semantic analysis (LSA). LSA represents the first-order
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“episodic” contexts in a word-by-context frequency matrix.
In this initial matrix, words are similar only if they frequently
co-occur in contexts (i.e., in the same documents across the
corpus). LSA then applies singular-value decomposition, a
technique from linear algebra, to this episodic matrix and re-
tains the 300 dimensions with the highest eigenvalues. The
resulting word vectors emphasize second-order relationships
that were latent in the original episodic matrix so that, in the
reduced space, words will be similar if they appear in similar
contexts, even if they never co-occur directly in the corpus
(e.g., synonyms and category coordinates). In summary,
LSA uses linear algebra to collapse a word’s episodic contexts
into a single point in a high-dimensional semantic space.

A similar pattern can be seen across contemporary DSMs.
Jones and Mewhort’s (2007) BEAGLE model accumulates
random vectors across episodic contexts to produce a distrib-
uted semantic representation for each word, so that a word’s
semantic representation is the average of the other words that
it has co-occurred with. Before learning, each word that can be
encountered in the corpus is assigned a random Gaussian vec-
tor to represent its physical characteristics, such as orthogra-
phy or phonology. This environmental vector is static and
remains the same each time the word is encountered. For each
studied context, a word’s memory vector is encoded as the
sum of the environmental vectors for the other words that it
co-occurred with. Across many contexts, a word’s memory
vector becomes a distributed pattern of features that reflects
its history of co-occurrence with other words. The final se-
mantic vector for a word is a linear average that tends to
emphasize higher-order semantic relationships of words that
co-occurred with the same words (e.g., synonyms).

The newest additions to the DSM family are predictive
neural embedding models, which use a connectionist architec-
ture and error-driven backpropagation to learn a distributed
vector pattern for a word’s meaning. The current frontrunner
is the Word2Vec model of Mikolov et al. (2013). Word2Vec is
a three-layer connectionist network with localist input and
output layers (i.e., with one node for each word in the vocab-
ulary), fully connected via a hidden layer of 300 nodes. Each
context, a target output word is predicted by using the other
co-occurring words as input. The error signal is
backpropagated through the network to increase the probabil-
ity of the network predicting the correct output word given the
same input words in future epochs. After many learning
epochs, the network settles, and the matrix of hidden-to-
output connections is exported as a semantic representation.
In this matrix, words are similar if they are predicted by sim-
ilar contexts. Hence, Word2Vec produces a similar outcome to
both LSA and BEAGLE by collapsing a word’s episodic con-
texts into a single reduced representation of meaning. All three
models accomplish the same task of producing a prototype for
aword’s meaning, albeit by different learning mechanisms. To
be clear, Word2Vec is a multilayer network; hence, it can
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predict the same output word (e.g., bark) given very different
input patterns (e.g., bark in the tree sense versus bark in the
dog sense). But the final representation for a word is the com-
plete pattern of weights—the prototype. Two words are typi-
cally compared via the cosine of their respective vectors in all
models, and so a homonym such as bark will be pulled be-
tween its two senses just as it is in LSA or BEAGLE.

Griffiths et al. (2007; see also Griffiths et al. 2005) have
suggested that homonyms present a core challenge to spatial
DSMs that the models cannot adequately explain, arguing
instead for probabilistic topic models. In addition, homonyms
and polysemes are hardly rare in language: The majority of
words in English have multiple senses, and the frequency
distribution of senses for a word is skewed, loosely
conforming to a Zipfian distribution. Prototype DSMs lose
the tail when collapsing to a prototype, but humans can regu-
larly comprehend the multiple less frequent meanings that are
averaged out in DSMs. Hence, DSMs have great difficulty
with the subordinate senses of homonyms (e.g., the river sense
of bank is dominated by the financial institution sense in the
prototype representation). Thus, disambiguating the meaning
of homonyms constitutes a valid falsification criterion for
DSMs that posit abstraction at learning.

Although vector-space models of semantics offer sophisti-
cated and inventive accounts of encoding, they offer weak
theories of retrieval. For example, LSA presents a clever
method for knowledge induction using singular value decom-
position and dimension reduction. But it invokes a naive the-
ory for retrieval that ignores established wisdom from the
study of human memory: Remembering is context dependent
(e.g., Godden and Baddeley 1975), constructive (Bartlett
1932), and conditional on the interaction between how infor-
mation is encoded and accessed (e.g., Morris et al. 1977;
Tulving and Pearlstone 1966; Tulving and Thomson 1973).
Tulving and Watkins 1973, p. 744) summarized the idea well:

... retrieval always depends both on the availability of
information in the memory store and on the accessibility
of that information through appropriate retrieval cues,
the latter being fragmentary knowledge the system pos-
sesses before retrieval about the material to be retrieved.
While the exact mechanism remains to be specified, we
find it helpful to think that the information contained in
the retrieval cues somehow actively combines or inter-
acts with the stored information to create the memory of
a previously experienced event. Retrieval cues may vary
greatly in their effectiveness, depending on the relation
between the format of stored information and the
encoding of the cues.

If we accept Tulving (1972) theorem, the vector-space ap-
proach to semantics presents only half of the solution for a
complete account of semantics. How, then, can we implement

the lessons from classical memory theory to develop a com-
plete account of how language knowledge is stored and mean-
ings are retrieved?

In the next section, we specify an instance-based model of
memory that formalizes semantic abstraction as an episodic
retrieval mechanism, rather than a learning mechanism. The
model builds on storage and retrieval methods from
Hintzman’s (1984, 1986, 1988) MINERVA 2 theory of epi-
sodic memory and advances previous efforts (Dennis 2005;
Johns and Jones 2015; Kwantes 2005) to demonstrate that
semantic memory can be conceptualized as an artifact of re-
trieval from episodic memory rather than an encoding mech-
anism and separate store as outlined in Tulving’s (1972) mod-
ular taxonomy of human memory.

Modeling Semantics as Retrieval
from Episodic Memory

The instance theory of semantics (ITS) operates based on a
combination of the encoding schemes of the BEAGLE model
(Jones and Mewhort 2007) and the retrieval operations of the
MINERVA 2 framework (Hintzman 1984, 1986, 1988). In
this framework, every letter string (i.e., word or nonword) is
represented by a unique n dimensional vector, w, where each
dimension takes a randomly sampled value from a normal
distribution with mean zero and variance 1/n. Vectors con-
structed in this manner are orthonormal in expectation and
are assumed to represent the physical form (orthography or
phonology) of the word, as in BEAGLE.

Memory for an example of language is encoded as an in-
stance context ¢;, equal to the sum of the j= 1...4 word vectors
in context i,

j=h
Ci = Zj-:ﬂ”ij (1)

where 4 is the number of words in context 7, w; is word j in the
context, and ¢; is the sum of the words in context i. To illus-
trate, the context, “the dog bit the mailman” is stored as w-
dog T Whit + Wimailman (cOnsistent with standard practice, we ex-
cluded a list of stop words).

The memory for each context, c;, is stored as a separate row
in an m X n memory matrix, M, where rows correspond to
memory traces (i.e., document contexts) and columns corre-
spond to features,

j=h
Mi =C = ijlw,j (2)
Forgetting is treated as data loss and is implemented by

deleting each feature in a memory with probability F. Thus,
as Fincreases from 0 to 1, memory for documents in memory
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degrades. Although the theory permits forgetting, we hold the
parameter constant at 1 (i.e., no forgetting assumed).

To retrieve a word’s meaning, a word vector is presented to
memory as a probe and a corresponding semantic vector is
retrieved that is called the echo. To compare word meanings,
their echoes are compared. Words with matching echoes have
identical meanings; words with nonmatching echoes match in
meaning in proportion to the match.

Retrieving the echo is a two-step process. In step 1, the
probe, p, activates all traces in memory, M, in parallel. Each
trace’s activation is computed as the cube of its cosine simi-
larity to the probe,

3
j:in i X M,“
4 = ijlp] y (3)

J=n_2 J=njy 12
ZjimiPj\ LM

where, g; is the activation of trace i in memory, p; is the value
of feature j in the probe, M;; is the value of feature j of trace 7 in
memory, and n is the number of columns in memory.
Activation ranges between — 1 and + 1. When the trace and
probe are identical @ = 1, when the trace and probe are orthog-
onal a =0, and when the trace and probe are opposite a =— 1.

Figure 1 shows the relationship between a trace’s sim-
ilarity to the probe and its activation. As shown, trace i’s
activation, «;, is defined as a positively accelerated trans-
formation of its cosine similarity to the probe. The non-
linearity of the activation function allows retrieval to be
quite selective so that only the traces that are very similar
to the probe are strongly activated and thus retrieved into
the echo. The activation function is an important feature
that makes the theory an instance theory and, as we will
show, is critical for the theory to retrieve selectively and
solve the disambiguation problem.

Second, a weighted sum of the traces is retrieved, where
each trace is weighted by its corresponding activation,

ej =YY \ai x My (4)
where ¢; is feature j in the echo, m is the number of traces in
memory, a; is the activation of trace i, and M, is the value of
feature ; in trace i in memory. The echo is the corresponding
semantic representation retrieved for the probe.

Finally, the semantic resemblance, r, between two probes,
p1 and p,, is computed as the cosine similarity between their
corresponding echoes,

Y er; x e
r(p1,py) = = , (5)

J=n 2 j=n 2
i—1€1j\/ 2j=1€2;
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Fig. 1 Transformation of similarity to activation in the instance-based
model

In summary, the theory assumes that humans record mem-
ory of their language experience, where each experience pro-
duces a trace that stores a sum of the words encountered. In
contrast to most current accounts of semantics that apply a
prototype abstraction algorithm to encode word meaning,
ITS records a neutral record of word use in the corpus and
develops a representation of word meaning on-the-fly by par-
allel and probe-driven retrieval. The model’s on-the-fly deri-
vation of semantics, conditional on the probe that is presented
to memory, is the critical feature that distinguishes it from
most other models of semantics (cf. Kwantes 2005) and that,
we will show, allows it to explain and track context-specific
retrieval of word meaning. We now turn to a demonstration of
the theory using an engineered and very simple artificial

language.

Experiment 1: Homonyms in an Artificial
Language

If ITS learns word meanings, it should predict human judg-
ments of word meaning. However, natural language is a com-
plex structure rife with ambiguity and confounding. Thus, we
begin with a contrived demonstration using a toy language.
Elman (1990) evaluated a simple recurrent network model
of language against a toy artificial language (see Elman’s
1990, Tables 3 and 4). His toy language included 13 different
word classes, each represented by one or two words. For ex-
ample, the word class NOUN_HUM was represented by the
words man and woman, the word class VERB_EAT was rep-
resented by the word eat, and the word class NOUN_FOOD
was represented by the words cookie and sandwich. The lan-
guage also included 15 sentence templates used to construct
language tokens (i.e., sentences). For example, the template
NOUN_HUM, VERB_EAT, NOUN_FOOD can be used to
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produce the following four sentences (a) “Man eat cookie”,
(b) “Man eat sandwich”, (¢) “Woman eat cookie”, and (d)
“Woman eat sandwich” by applying the following rewrite
rules: (1) NOUN_HUM — {man, woman}, (2)
VERB_EAT — {eat}, and (3) NOUN_FOOD — {cookie,
sandwich}. To evaluate his SRN model of language, Elman
trained the network on a corpus of sample sentences generated
from this language.

We constructed an even simpler version of Elman’s (1990)
language to test our model. Our artificial language is presented
in Table 1 and includes seven word classes, each represented
by two words (e.g., NOUN_HUMAN is represented by two
words man and woman). Critical for the analysis that follows,
the word break was included in all three of the verb classes:
VERB VEHICLE — {stop, break},'
VERB _DINNERWARE — {smash, break}, and
VERB_NEWS — {report, break}. Thus, break is a homonym
with three unrelated senses.

The use of break in all three verb classes was a deliberate
component of our design and makes break an ambiguous
word with three orthogonal meanings: In the vehicle sense,
it is related to sfop; in the dinnerware sense, it is related to
smash; and in the news sense, it is related to report. We will
use this feature of the language to test our model’s ability (a) to
appreciate a homonym’s semantic ambiguity when presented
in isolation and (b) to disambiguate the cued meaning of a
homonym when presented in context (e.g., break/story —
report).

The language includes three sentence frames. The first sen-
tence frame produces sentences about stopping/breaking (i.e.,
braking) vehicles. The second sentence frame produces
sentences about smashing/breaking dinnerware. The third
sentence frame produces sentences about reporting/breaking
news.

To generate a corpus, we sampled 20,000 sentences from the
language. To generate a sentence, we (a) sampled one of the
three sentence frames and (b) substituted words for the word
classes in the sentence frame. For example, after sampling the
sentence frame {NOUN HUMAN, VERB VEHICLE,
NOUN_VEHICLE}, we sampled words man, stop, and car to
the three respective word classes, thus producing the sentence
“man stop car.”

Applying the Model

Once a corpus had been generated, we applied our model in
four steps. First, we generated a random vector of dimension-
ality 20,000 for each of the 12 words in the language (i.e.,

! Ignore the misspelling of break in the vehicular sense (i.e., brake). If the
language is auditory, then the phonology of the break-brake homophone is
identical, and so we use a single spelling (break) here so the word has an
identical input to the model in either verb sense.

man, woman, car, truck, plate, glass, story, news, stop, break,
smash, and report).2 Second, we stored a representation of
each sentence as a trace in memory; thus, memory was a
20,000 (contexts) by 20,000 (dimensions) matrix. Third, we
retrieved an echo for each of the individual words. Finally, we
computed the similarity between the echo retrieved for each
word against the echo retrieved for each of the other 11 words.

The top panel in Fig. 2 shows the semantic relation-
ships between all 12 words as a two-dimensional plot
derived using MDS on the corresponding echoes
(Shepard 1980). As shown, the monogamous words from
the vehicle topic are clustered together (i.e., stop, car,
truck), the monogamous words from the dinnerware topic
are clustered together (i.e., plate, glass, smash), the mo-
nogamous words from the news topic are clustered to-
gether (i.e., story, news, report), and the promiscuous
words (i.e., words that occurred in all three topics) are
clustered together (i.e., man, woman, and break).
Secondly, the different topic clusters are separated and
distinct in space. Thirdly, the nouns within each cluster
are closer to one another than they are to their correspond-
ing monogamous verb (e.g., car and truck are closer to
one another than they are to stop). Fourthly, the ambigu-
ous word (i.e., break) is equidistant to the vehicle, dinner-
ware, and news clusters.

The results confirm that an instance-based approach to se-
mantics can recover the structure of a small artificial language
and that it can recognize semantic ambiguity. But, can the
theory disambiguate the meaning of the ambiguous word
(i.e., break) when it is presented in context (e.g., break/
glass — smash)?

Using Context to Disambiguate Word Meaning

The corpus we generated establishes that the word break has
three equally likely meanings. In the vehicle context, break
(i.e., brake) is used synonymously with sfop, as in stopping or
braking a car. In the dinnerware context, break is used synon-
ymously with smash, as in smashing or breaking a dinner
plate. In the news context, break is used synonymously with
report, as in reporting or breaking a story. The solution in the
bottom panel of Fig. 2 shows that presenting break in isolation
to ITS retrieves an echo that is equally similar to all three of'its
potential meanings.

In the next simulation, we present break in conjunction
with a disambiguating word to determine if the echo retrieved
by the joint probe (e.g., break/car) retrieves an echo that is
more similar to the contextually cued meaning (i.e., sfop) than

2 We could have used a substantially smaller dimensionality for the word
vectors, but very high dimensionality vectors allowed us to derive stable se-
mantic representations later in the paper when we apply the theory to a large
corpus of natural language.
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Table 1 Artificial language
Categories of lexical items

Categories

Examples

NOUN_HUMAN
NOUN_VEHICLE
NOUN_DINNERWARE
NOUN NEWS

VERB VEHICLE
VERB DINNERWARE
VERB_NEWS
Sentence frames
NOUN_HUMAN
NOUN_HUMAN
NOUN_HUMAN

man, woman
car, truck
plate, glass
story, news
stop, break
smash, break

report, break

VERB_VEHICLE
VERB_DINNERWARE
VERB_NEWS

NOUN_VEHICLE
NOUN_DINNERWARE
NOUN_NEWS

to the competing contextually uncued meanings (i.e., smash or
report).

To probe memory with a joint probe, we need to expand the
activation function presented in Formula 3. To solve the prob-
lem, we borrowed Kwantes’ (2005) reasoning (see also Estes’
1994 product rule) and computed a trace’s activation as the
product of the activations for all 4 individual words in the

query:

3
k=h T X M
= Zj:lpkj ij

a; =
' kl;[1 zj:" 2 Jj=n M2
j=1Pi\) Zj=1M

(6)

where a; is the activation of trace 7, py; is feature j of word k in
the probe, Mj; is feature j of document i in memory, # is the
dimensionality of a word representation, and / is the number
of words in the probe.

The expanded activation function supports a selective acti-
vation of traces that retrieves traces that are similar to all
words in the probe. Thus, even if one word in the probe is
similar to the trace, pairing it with a word that is not similar to
the trace will, by the product rule, cause the trace to be only
weakly activated and thus weakly retrieved into the echo.
Instances that contain most, or all, of the cue words will thus
be preferentially activated. The mechanism should support
contextual disambiguation. For example, presenting a joint
probe break/car will weakly activate traces that are similar
to only one of the two words, but will strongly activate traces
that are similar to both words. The new activation function is
perfectly consistent with the one presented in Eq. 3 (i.e., Eq. 6
simplifies to Eq. 3 when 2=1).

We evaluated ITS’s contextual disambiguation of word
meaning by retrieving an echo for break in conjunction
with each of the six nouns (i.e., car, truck, glass, plate, story,
and news) and, then, computing its similarity to the echoes
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retrieved with the three monogamous verbs (i.e., stop, smash,
and report). If the model disambiguates the correct meaning of
break, it should interpret break/car and break/truck as similar
to stop, breakiplate and break/glass as similar to smash, and
break/story and breakiarticle as similar to report.

Results are shown in the bottom panel of Fig. 2. As shown,
ITS successfully retrieved the intended meaning of break in
the context of a disambiguating partner. The first set of bars
shows the similarity of break to each of its possible meanings
(i.e., presenting break in isolation retrieves an echo that is
equally similar to the echoes for stop, smash, and report).
The null difference between the three senses establishes that
the model knows all three meanings of the word break and
that it knows them equally well.

The remaining bars in the bottom panel of Fig. 2
show the semantic similarity of break to each of its
three possible senses, conditional on the partnered and
disambiguating noun. As shown, when break was
probed in conjunction with car or fruck, the echo was
more similar to stop than it was to either smash or
report. When break was probed in conjunction with
plate or glass, the echo was more similar to smash than
it was to either stop or report. When break was probed
in conjunction with story or article, the echo retrieved
was more similar to report than stop or smash. Finally,
and equally important to the positive disambiguation of
the homonym break, the echoes were also less similar
to their uncued meanings. For example, when break was
probed in conjunction with car or fruck, the echo was
less similar to the competing alternative meanings (i.e.,
smash and report). The same pattern held for the other
two senses of break.

In conclusion, the simulations in Fig. 2 show that ITS
understands the overall ambiguous meaning of break when
presented in isolation and the particular meanings of break
when presented in conjunction with a disambiguating noun.
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Fig. 2 Results from ITS with the artificial language, where the
ambiguous word (i.e., break) occurs equally often in all three senses
(i.e., vehicle, news, and dinnerware, all p = 1/3). The top panel shows
the semantic space for all words in the language. The bottom panel
shows ITS’s ability to disambiguate the meaning of break depending on
the context in which it is presented

Prototype Accounts

For comparison, and to assess the criticisms of Griffiths et al.
(2005, 2007) of prototype accounts of distributional seman-
tics, we conducted corresponding simulations using LSA (i.e.,
a first-generation prototype model of distributional semantics)
and BEAGLE (i.e., a modern prototype model of distribution-
al semantics).

In the simulations with LSA (Landauer and Dumais
1997), we (a) derived the word-by-context matrix from
the corpus, (b) weighted the matrix by the standard entro-
py calculation, (c) derived a solution by dimension reduc-
tion, (d) computed the cosine similarity between words in
each of the reduced spaces, and (e) tested disambiguation
of the word break in conjunction with each of the six
disambiguating nouns (i.e., car, truck, plate, glass, story,
and news).

In the simulations with BEAGLE (Jones and Mewhort
2007), we constructed an environment vector, ¢;, for each of
the i words in the corpus (i.e., a vector of dimensionality 7 =
2000 where each dimension takes a value randomly sampled
from a normal distribution with mean 0 and variance 1/n) and
derived the semantic vector for each of the i=1...12 words in
the corpus by,

mi =YY e (7)

for every sentence context that includes word 7, where m; is
the semantic representation of word 7, e, is word k in sentence
J, s is the number of sentences in the corpus, and 7 is the
number of words in a sentence. After the word representations
had been constructed, we used the representations (i.e., all i
memory vectors) to test for disambiguation of the word break
in isolation and in conjunction with each of the six disambig-
uating nouns (i.e., car, truck, plate, glass, story, and news).

Because neither LSA nor BEAGLE store traces, we could
not retrieve the semantic representation by presenting a probe
and retrieving a representation using the joint activation func-
tion. Thus, we followed tradition and formed a joint probe by
averaging the relevant word representations (e.g., break/car-
=[break + car]/2) and computed the cosine similarity of this
centroid representation to the vectors for the three verb senses
(i.e., stop, smash, and report).

Results with both LSA and BEAGLE are presented in
Figs. 3 and 4, respectively. The results are presented in the
same format as the results for MINERVA to ease a visual
comparison of the results over the three models.

The MDS solutions in Figs. 3 and 4 show that LSA and
BEAGLE arrive at very similar solutions as ITS for individual
words: Both recognize the semantic similarity of words within
each of the three topic categories and recognize the difference
in semantic similarity between the three topic categories.
Naturally, this is expected.

However, in contradiction to conventional wisdom that
prototype models of semantics should fail to disambiguate
the contextually cued meaning of a homonym, the bottom
rows of Figs. 3 and 4 show that LSA and BEAGLE succeed
at disambiguating the cued meaning of a homonym. That is, in
contradiction to accepted wisdom, they do understand the dif-
ferent senses of the homonym break, differently and appropri-
ately, depending on the context in which break is presented.

The success of both LSA and BEAGLE at disambiguating
the contextually appropriate meaning of break is surprising.
However, the next simulation will show that the theories do in
fact fail, as Griffiths et al. (2005, 2007) argued, under more
realistic conditions.

Analysis of Disambiguation When the Homonym Has
a Dominant Sense

It is well known that vector-based models of semantics have
trouble disambiguating the meaning of homonyms. However,
ITS, LSA, and BEAGLE all succeeded in our simple test.
Why? One sensible criticism is that our toy language differs
from natural language in several important ways (e.g., number
of word classes, number of words, breadth of variation, dif-
ference in complexity, and so on). Consequently, the success
might be illusory. In the next simulation, we reassessed ITS,
LSA, and BEAGLE using a different corpus from the same

@ Springer
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language that was constructed so that break had a dominant
sense.

To give break a dominant sense, we constructed a new
corpus where sentences from the vehicle topic appeared
more frequently than sentences from the dinnerware and
news topics: p(NOUN_HUMAN, VERB _VEHICLE,
NOUN_VEHICLE) =4/6, whereas p(NOUN HUMAN,
VERB DINNERWARE, NOUN_ DINNERWARE) =
p(NOUN_HUMAN, VERB NEWS, NOUN NEWS)=1/
6. Although our manipulation of the corpus is modest
(i.e., the dominant sense could be engineered to be even
more dominant), our simulations will show that changing
the distribution of context-specific word use has a mea-
surable and, as we will demonstrate, diagnostic influence
on model performance. To foreshadow the results, our
simulations will substantiate the common criticism of
vector-based distributional approaches to semantics.
However, our simulations will also show that our
instance-based approach to semantics elegantly handles
the problem, a selective activation of memory instances
that are consistent with a cued subordinate sense.

The simulation we conducted was identical to the one al-
ready presented. However, the corpus was constructed so that
sentences from the vehicle context were more frequent than
sentences from the dinnerware and news contexts. The results
from the simulations are presented in Figs. 5, 6, and 7 for
simulations with ITS, LSA, and BEAGLE, respectively.

As shown in Fig. 5, the behavior of ITS was affected by the
manipulation, but in sensible ways. Firstly, the monogamous
words within each topic cluster together as before. Secondly,
the promiscuous words (i.e., words that appeared in all three
topic contexts) remain clustered, but consistent with the
change in topic, base rates are closer to the monogamous
words from the vehicle topic (i.e., the context in which they
appeared more frequently) than the news and dinnerware
topics. Finally, and most critically, the manipulation had no
noticeable effect on the model’s ability to disambiguate the
meaning of the homonym break when break was presented
in the context of a disambiguating noun. As shown in Figs. 6
and 7, the same is not true of the prototype models.

As shown in Fig. 6, LSA’s behavior was strongly affected
by the manipulation. Firstly, LSA concludes that the words in
the dinnerware and news categories are similar to one another
(i.e., by virtue of their shared difference to words in the vehicle
category). Secondly, presenting LSA with break/car or break/
truck (i.e., the dominant sense) recovers the cued sense of
break (i.e., stop); however, presenting LSA with breaki/plate,
breakiglass, break/story, and break/news (i.e., the subordinate
sense) does not—eliciting both smash or report as equally
possible senses.

As shown in Fig. 7, BEAGLE produces a pattern of single
word results that is very similar to the one produced by ITS.
However, as shown in the test for disambiguation of break
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when presented in context, BEAGLE failed to understand the
meaning of break in context—thinking instead that the mean-
ing of break was consistent with its dominant meaning in all
cases (i.e., stop).

The demonstration confirms the criticism of Griffiths et al.
(2005, 2007) of the distributional prototype models. Unless
semantically ambiguous words appear equally often in all
senses, prototype models (i.e., LSA and BEAGLE) fail to
understand the contextually valid meaning of that word. To
the extent that LSA and BEAGLE fail to comprehend subor-
dinate senses of homonyms, the common criticism is accurate:
the prototype approach to distributional semantics offers a
poor account of human behavior.

But, in contrast to the prototype models, ITS handles the
disambiguation problem elegantly. Firstly, ITS recognizes the
dominant sense of break: when break is presented in isolation,
the echo retrieved was closer to stop than smash or report (i.e.,
the dominant sense). Secondly, even though ITS appreciates
that break has a dominant sense, presenting break with a dis-
ambiguating noun (e.g., breaki/plate) allows it to retrieve the
appropriately cued subordinate sense (i.e., smash). Finally, as
in the previous simulations, presenting break/car or break/
truck retrieves an echo more similar to the echo for szop than
either smash or report, presenting break/plate or breakiglass
retrieves an echo more similar to smash than it does for either
stop or report, and presenting break/story or break/news re-
trieves an echo more similar to the echo for report than it does
for either stop or smash.

In summary, the criticism of Griffiths et al. (2005, 2007) of
distributional models of semantics applies as charged to the
prototype theories and, by extension, to similar models like
HAL and Word2Vec. However, an instance-based approach to
semantics is immune to this shortcoming because the archi-
tecture affords nonlinear activation of instances, which can
reinstate the less common linguistic memories of the word.
ITS only retrieves the traces in which both of the words in the
joint probe occur. With the behavior of the instance-based
theory now articulated in a controlled and contrived demon-
stration, we turn to an analysis of semantics derived from a
natural language corpus.

Experiment 2: Natural Language Simulations

The simulations presented so far provide a good picture of our
instance-based model of semantics and how it disambiguates
the meaning of a homonym presented in context. However,
solving a toy problem does not guarantee a solution to the
problem at scale (e.g., Feldman-Stewart and Mewhort 1994).

To examine the theory at scale, we followed tradition and
stored a record of language experience represented by the
Touchstone Applied Science Associates (TASA) corpus,
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where each document in the corpus was encoded as a trace in
memory (i.e., as a vector equal to a sum of the word vectors
that correspond to the words in the document).

Next, we presented single and joint probes to memory and
retrieved their echoes (i.e., their semantic representations).
Finally, we computed the similarity between the echoes that
were retrieved. We note that the model is applied exactly as it
was in the previous simulations with the artificial language
corpus and that only the corpus differs between the simula-
tions that follow and the simulations already presented. Thus,
an understanding of the model gained from the previous ex-
amples using the artificial language can be transferred whole-
sale for understanding the more expansive yet methodologi-
cally and computationally equivalent analysis of natural lan-
guage semantics that follows.

Taxonomic Structure

A benchmark for semantic theories is that they can organize
words into coherent taxonomic categories. For example, a
competent theory of semantics should recognize that items
from the category of animals are more similar to one another
than they are to items from the category of vehicles. To eval-
uate our theory against the criterion of taxonomic organiza-
tion, we stored a record of language experience from the
TASA corpus and then retrieved echoes for words from
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defined taxonomic categories. For breadth, we derived solu-
tions for words taken from a previous demonstration with
BEAGLE (Jones and Mewhort 2007) and a previous demon-
stration with HAL (Lund and Burgess 1996).

Results for different tests are presented in Fig. 8 as two-
dimensional MDS solutions. Plots in the left column of Fig. 4
present solutions for words from the three taxonomic catego-
ries examined in Jones and Mewhort (2007, Fig. 3): financial,
science, and sports. The plots in the right column of Fig. 8
present solutions for words from three taxonomic categories
examined in Lund and Burgess (1996, Fig. 2): body parts,
countries, and animals. The complete categorized word lists
are presented in Table 2.

As shown in the top row of Fig. 8, ITS does an excel-
lent job of grouping words from the same categories while
distinguishing words in opposing categories. To confirm
the visual impression, we computed the intra- and
intercategory similarities between words. For the Jones
and Mewhort (2007) graph, the mean intracategory item-
to-item cosine similarity (M =0.27, SD=0.11) was, by a
conservative estimate, 1.82 standard deviations greater
than the mean intercategory item-to-item similarity (M =
0.07, SD=0.04). The same is true for the Lund and
Burgess (1996) graph: the mean intracategory item-to-
item cosine similarity (M =0.18, SD=0.10) was, by a
conservative estimate, a still strong 1 standard deviations
greater than the mean intercategory item-to-item similarity
(M=0.08, SD=0.05).

For direct comparison, we conducted corresponding anal-
yses using LSA and BEAGLE. Simulations with LSA used
the vectors developed from the TASA corpus by Giinther et al.
(2015). Simulations with BEAGLE used vectors that we de-
rived from the TASA corpus.

Results with LSA are presented in the middle row of Fig. 8.
As shown, LSA positions items in the same category as more
similar to one another than items in different categories. For
the Jones and Mewhort (2007) set, the mean intracategory
item-to-item cosine similarity (M =0.42, SD =0.28) was
1.50 standard deviations greater than the mean intercategory
item-to-item similarity (M= 0.00, SD =0.03). For the Lund
and Burgess (1996) set, the mean intracategory item-to-item
cosine similarity (M =0.14, SD =0.19) was 0.68 standard de-
viations greater than the mean intercategory item-to-item sim-
ilarity (M =0.01, SD =0.05).

Results with BEAGLE are presented in the bottom row
of Fig. 8. As shown, BEAGLE also rates words that be-
long to the same category as more similar to one another
than to items in the opposing categories. For the Jones and
Mewhort (2007) set, the mean intracategory item-to-item
cosine similarity (M =0.48, SD=0.13) was 2.54 standard
deviations greater than the mean intercategory item-to-
item cosine similarity (M =0.15, SD=0.09). For the
Lund and Burgess (1996) set, the mean intracategory
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Fig. 8 Semantic spaces and
taxonomic structure. The top
panel presents results with ITS;
the middle panel presents results
with LSA; the bottom panel
presents results with BEAGLE.
Results on the left show results for
words from Jones and Mewhort
(2007). Results on the right show
results for words from Lund and
Burgess (1996)

item-to-item cosine similarity (M =0.40, SD=0.17) was
1.36 standard deviations greater than the mean
intercategory item-to-item cosine similarity (M=0.17,

SD =0.10).

Taken together, all three models do a good job of iden-
tifying which words belong to the same category and
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which do not. Critical to our analysis, the results serve
as proof of concept that ITS, an instance-based model of
distributional semantics, can perform taxonomic classifi-

cation and that it performs within the same range of ac-

curacy as LSA and BEAGLE, the standards for prototype
models of distributional semantics.

@ Springer
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Disambiguating Meaning in Context

The analysis of taxonomic structure provides a demonstration
that ITS can group words that have related meanings.
However, the demonstration does not provide evidence that
the theory can disambiguate the meanings of homonyms con-
ditional on context. To test the ability of ITS to understand the
contextually appropriate meaning of a homonym, we conduct-
ed a simulation for disambiguation of homonyms using mate-
rials from a classic experiment reported by Schvaneveldt et al.
(1976).

In their experiment, participants performed lexical deci-
sion. On each trial, three successive letter-strings were pre-
sented (e.g., save-bank-money or save-bank-boat) and the
subject’s task was to identify each string as a word or nonword
as quickly and accurately as possible. On cued trials, the first
two strings cued the appropriate meaning of the third string.
For example, save/bank cued money and river/bank cued
boat. On miscued trials, the first two words miscued the ap-
propriate meaning. For example, save/bank miscued boat and
river/bank miscued money. The critical result (or at least the
one relevant here) was that participants were faster to identify
the third word on cued than miscued trials.

To evaluate ITS, we conducted a simulation using the
materials of Schvaneveldt et al. (1976) materials (see their
Table 2, p. 248). On each trial, (a) an echo was retrieved for
the joint probe composed of the first and second words (e.g.,
save/bank), (b) an echo was retrieved for the third word
(e.g., money), and (c) the two echoes were compared. The
cosine similarity of the two echoes indexed how well words
1 and 2 activated word 3 in the series.

We conducted a full set of comparisons to match the original
experiment that included all 144 of the possible cued tests and
288 of the possible miscued tests. Finally, we computed a mean
and variance for the cosines over all of the cued tests and the
same for all of the miscued tests. We reasoned that if ITS
disambiguates the meaning of a homonym presented in con-
text, then the similarity between the echoes for joint primes and
their targets will be reliably greater on cued than miscued trials.
For example, cos(save/bank, money) > cos(river/bank, money).

The top leftmost panel of Fig. 9 shows the mean cosine
similarity between the two-word cues and their targets, aver-
aged over all 144 cued and 288 miscued trials.

There are three key differences to note. Firstly, the cosine
similarity of the echo retrieved by the joint word primes was
greater on cued than miscued trials. Secondly, the difference
was statistically significant, greater than two standard er-
rors. Thirdly, the standard error on miscued trials was great-
er than the standard error on cued trials—a difference that is
consistent with the results of Schvaneveldt et al. (1976)
results. In summary, an instance-based approach to seman-
tics disambiguates homonyms in a manner consistent with
data from human behavior.
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Table 2 Words from Jones and Mewhort (2007) and from Lund and
Burgess (1996) that were used in our tests of taxonomic organization,
along with the categories to which they belong

Jones and Mewhort (2007) Lund and Burgess (1996)

Category Word Category Word

Finance Financial Body part Ankle
Savings Leg
Finance Shoulder
Pay Toe
Invested Finger
Loaned Wrist
Borrow Nose
Lend Ear
Invest Eye
Investments Hand
Bank Face
Spend Arm
Save Head

Science Astronomy Foot
Physics Countries China
Chemistry Asia
Psychology France
Biology Russia
Scientific Europe
Mathematics Brazil
Technology Africa
Scientists America
Science Hawaii
Research Animals Oyster

Sports Sports Puppy
Team Kitten
Teams Mouse
Football Dog
Coach Cow
Sport Cat
Players Lion
Baseball Bull
Soccer Turtle
Tennis Tooth
Basketball

Note. Lund and Burgess (1996) included footh in the animal category
rather than body part category, even though it could conceivably belong
in either for different semantic reasons

For the sake of comparison, and to evaluate the criticism of
Griffiths et al. (2005, 2007) of prototype accounts of distribu-
tional semantics, we repeated the simulation with LSA using
the vectors developed by Giinther et al. (2015) and the vectors
that we derived using BEAGLE. As in our earlier simulations
with the artificial language, we used the centroid method to



Comput Brain Behav

represent a joint probe: comparing the average of words 1 and
2 to the representation for word 3 in a series.

The results for LSA are shown in the middle leftmost panel
in Fig. 9 and the results with BEAGLE are shown in the
bottom leftmost panel in Fig. 9. As shown, LSA and
BEAGLE both disambiguate the meaning of word 3 in a series
when primed with the average of words 1 and 2: The mean
cosine is greater on cued than miscued trials.

At first blush, our results suggest that the claim that the
prototype models cannot disambiguate homonyms is false.

Fig. 9 Simulation of
disambiguation with natural
language from the Schvaneveldt
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However, the variances suggest that the mean cosine similar-
ities from our analysis using LSA and BEAGLE might hide a
more nuanced pattern of results. To explore the issue, we
examined the performance for the individual items in the stim-
ulus set of Schvaneveldt et al. (1976).

Armstrong et al. (2012) collected participant ratings on the
semantic ambiguity of homonyms. Based on those data, they
computed each homonym’s dominance score—a measure-
ment that indexes its semantic uncertainty in the range 0 to
1, where 0 indicates the word is perfectly ambiguous (i.e.,
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participants considered both potential meanings of a hom-
onym to be equally likely) and 1 indicates the word is perfect-
ly unambiguous (i.e., participants rate one meaning of a hom-
onym to be absolute).

We cross-referenced the norms of Armstrong et al.
(2012) with the stimulus list of Schvaneveldt et al.
(1976) and copied the measurement of semantic domi-
nance for the 27 of the 36 homonyms that appeared in
both sets. A list of dominance scores for the 27 hom-
onyms can be found in Table 3. As shown, participants
rated some homonyms as having a strong dominant sense
(e.g., bank is judged as having a dominant sense related to
the place where money is kept versus the ridge of earth
that separates water from land) and rated others as more
ambiguous (e.g., the meaning of bark was rated as more
uncertain in relation to its competing senses of the sound
a dog makes and the material on the outside of a tree).

Table 3 Dominance

scores from the norms of Homonym Dominance

Armstrong et al. (2012)

for 27 of the 36 hom- Bail 0.46

onyms in the stimulus list Bank 0.68

of Schvaneveldt et al. Bark 035

(1976)
Bowl 0.46
Box 043
Bridge 0.74
Calf 0.36
Fair 0.51
Fan 0.17
Fleet 0.66
Hide 0.60
Jam 0.28
Jar 0.70
Lying 0.49
Lock 0.66
Mint 0.52
Pen 0.65
Pit 0.61
Race 0.12
Ring 0.14
Sage 0.50
Spit 0.80
Stable 0.42
Stern 0.52
Tap 0.38
Tick 0.55
Tire 031

Note. The items ball, date, fast, light, mine,
mold, pick, punch, and riddle from
Schvaneveldt et al. (1976) were not includ-
ed in the norms of Armstrong et al. (2012)
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Using the empirical norms of Armstrong et al. (2012), we
recalculated the difference in cosine similarities on cued ver-
sus miscued trials for the six homonyms in the stimulus list of
Schvaneveldt et al. that had the smallest dominance scores
(i.e., bark, fan, jam, race, ring, and tire that had uncertain
interpretations; M=0.23, SD =0.10, range=0.12 to 0.35)
and the six that had the highest dominance scores (i.e., bank,
bridge, fleet, jar, lock, and spit; M=0.71, SD = 0.05, range =
0.66 to 0.80). An independent samples ¢ test by items con-
firmed that the difference in the mean dominance score in the
two sets (0.71-0.23 =0.48) was statistically significant,
#10)=8.56, p < 0.0001.

Model performances on the six least dominant and six most
dominant homonyms are presented in the center and rightmost
columns in Fig. 9, respectively, with results for ITS, LSA, and
BEAGLE shown in the top, middle, and bottom panels, re-
spectively. As shown, and consistent with the results from our
analysis of the artificial language presented earlier (see Figs. 2,
3,4,5,6,and 7), ITS succeeded at comprehending the mean-
ing of a homonym in context (i.e., cued > miscued), whether
the homonym was presented in its strong or weak sense. In
contrast, both LSA and BEAGLE failed to comprehend the
meaning of a homonym in context, unless it was presented in
the context of its dominant sense (i.e., in the case of the strong
dominance items, both models predict miscued > cued).

‘We conclude that the common criticism (see Griffiths et al.
2005, 2007) of LSA and, by corollary, related prototype
models is valid when comprehending a homonym’s subordi-
nate sense. More importantly, our simulations show that the
criticism does not apply to an instance-based approach to se-
mantics that includes context-sensitive retrieval of meaning
via selective and probe-driven retrieval of traces from
memory.

General Discussion

Distributional models of semantics have been remarkably suc-
cessful in cognitive science, both as tools and as theories of
human learning and representation. But since their inception,
the assumption has been that abstraction is a core goal of the
learning system, storing a single economical representation
that best captures the central tendency of the contexts in which
a word occurs. This prototype assumption may have been
implicitly guided by popular theoretical principles of cogni-
tive economy (Rosch and Mervis 1975) and the Chomskian
presumption that the job of the cognitive mechanism is to
abstract the generative rules from language instances.
However, prototype models of semantics are at odds with
other subfields of cognition, such as categorization and recog-
nition, which have emphasized the superiority of instance-
based and exemplar-based models over prototype models.
As ITS demonstrates, a model that stores language instances



Comput Brain Behav

and applies a simple retrieval mechanism can produce on-the-
fly semantic representations given a cue. Further, the model
allows for nonlinear activation of instances, producing very
different “abstracted” representations depending on a cue—
something that is not possible if abstraction is applied at learn-
ing to derive a prototypical representation of each word (as
with virtually all current and classic DSMs).

The notion that semantic abstraction may be better concep-
tualized as a retrieval mechanism rather than an encoding
mechanism was originally posited by Kwantes (2005). Our
ITS model builds on that advance using the architecture from
Hintzman’s (1984, 1986, 1988) MINERVA exemplar theory
of human memory.

MINERVA was invented to explain how semantics can
emerge during a probe-driven, selective, and parallel retrieval
of instances. When the theory was developed, modeling of
natural language semantics was limited by the available com-
putational power and the relative paucity of research on natu-
ral language processing at scale—a topic that was only made
tractable by the invention of the vector-based models of se-
mantics (Landauer and Dumais 1997; Lund and Burgess
1996). Consequently, the argument was developed in relation
to prototype learning of small artificial categories. But, our
analysis is consistent with that initial examination and
goal—just applied at the scale of natural language. Despite
the difference in scale, we view our analysis to be, at its core,
a straightforward restatement and extension of Hintzman’s
(1984, 1986, 1988) original thesis about category learning
within the domain of language.

More generally, our demonstration shows that an
established and classic theory for memory that has previously
been applied to understand a suite of behaviors including (a)
recognition memory (Hintzman 1984), (b) frequency judg-
ment (Hintzman 1988), (¢) cued recall (Hintzman 1986), (d)
classification (Hintzman 1986), (e) function learning
(Kwantes and Neal 2006), (f) judgment and decision
(Dougherty et al. 1999; Thomas et al. 2008), (g) speech nor-
malization (Goldinger 1998), (h) confidence/accuracy inver-
sions in eyewitness identification (Clark 1997), (i) language
processing (Rosch and Mervis 1975), (j) false memory (Arndt
and Hirshman 1998), (k) memory dissociations in aging
(Benjamin 2010), (1) implicit learning (Jamieson and
Mewhort 2009a, 2010, 2011), (m) speeded choice (Jamieson
and Mewhort 2009b), (n) associative learning (Jamieson et al.
2010b, 2012), (o) the production effect in recognition memory
(Jamieson et al. 2016a), and (p) selective memory impairment
in amnesia (Jamieson et al. 2010a; Curtis and Jamieson 2018)
can also be used to understand semantics. The cross-lab and
cross-domain effort represents the way that science ought to
progress—by developing a general account of memory and its
processes in a working computational system to produce a
common explanation of behavior rather than a set of lab-

specific and domain-specific theories for different behaviors
(Newell 1973).

Although not fully reported here, ITS can reproduce any
general semantic phenomena that have been used to support
classic DSMs. But ITS is also able to explain subordinate
senses of homonyms in context due to nonlinear activation
of language instances, where prototype DSMs lose the distinc-
tion due to their aggregated representation. It is important to
note that our demonstration with homonyms is not a minor
flaw with prototype DSMs—it is a critical falsification crite-
rion. More than half of all English words have multiple senses,
and the distribution of sense frequencies is heavy-tail distrib-
uted. Humans understand the distinction among word senses
easily, but prototype DSMs are heavily biased by the domi-
nant sense in averaging, similar to the problem of classic XOR
in categorization. Prototype DSMs lose the tail of the sense
distribution, and the tail is where many of our word meanings
in memory live.

Although prototype DSMs do not disambiguate word
meaning in our simulations (Griffiths et al. 2005, 2007), ad
hoc patches have been developed to address the problem. For
example, Kintsch (2001) developed a predication operation to
disambiguate word meaning in LSA and Cohen and Widdows
(2016) developed a projection method to do the same (see also
Erk and Pad6 2008, and Reisinger and Mooney 2010, for
multiprototype methods developed in the domain of
computational linguistics). However, it is always true that a
theoretical model can be developed to accommodate a behav-
ior once the behavior is known and articulated. Our instance-
based solution, on the other hand, does not require an ad hoc
patch. Rather, disambiguation of word meaning, even when
the meaning is subordinate, falls naturally out of first princi-
ples. Although Kintsch’s and Cohen and Widdow’s methods
might present one account of cognitive processes in semantic
disambiguation in natural language processing, our solution
provides an alternative way to think about semantics and can
serve as a motivated and articulate foil to analyze the problem
more closely in future work.

ITS gives an elegant solution for computing word meaning
that is grounded in classic principles of human memory.
However, adopting the method comes at computational ex-
pense (Stone et al. 2011). In a prototype DSM, each new
language experience is integrated into existing semantic
knowledge: Therefore, storage demands do not increase and
the derivation of word meaning is computed up front. In an
instance-based DSM, each new language experience lays
down a new trace in memory and word meaning is derived
from that record on-the-fly; therefore, each new trace in-
creases the demands on memory as well as the time to derive
a word’s meaning. Thus, prototype DSMs present a more
computationally efficient way to measure semantics than
instance-based DSMs. So, how do we balance the theoretical
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insights gained from an instance-based approach to semantics
against computational efficiency?

There are many differences between the brain and compu-
tational databases in how they represent and retrieve informa-
tion. The search and abstraction processes used in human
cognition need not be identical to efficient database search.
Models of cognition have long assumed that memory exem-
plars can be activated in parallel, although the code we use to
implement this in a model will usually use a loop routine. This
is a distinct difference between the two disciplines: Looping
through all exemplars is not an efficient method of, for exam-
ple, word similarity matching, but it may well be the correct
model of how humans do it. In our estimation, the practical
constraints of current computational hardware should not be
used as a scientifically valid reason to discard working models
of human cognition such as the instance-based model of se-
mantics presented here.

Although we have provided an instance-based DSM to
encode word meaning from language experience, Storms
et al. (2000)) have examined the distinction between an
instance-based and prototype-based approach to natural
language classification. In that work, they relied on the
generalized context model (Nosofsky 1984, 1986) rather
than the MINERVA?2 framework. In some of their work,
the evidence favored an instance-based conclusion (Smits
et al. 2002; Voorspoels et al. 2008). In other work, their
evidence favored an intermediate representation some-
where in between an instance and prototype representa-
tion (Verbeemen et al. 2007; Voorspoels et al. 2011).
Taken together, their work suggests that it may be naive
to pit the instance and prototype DSMs against one an-
other as though they were mutually exclusive. Rather, it
might be more productive to consider how representations
from the instance-based and prototype DSMs differ, how
they complement one another, and how the different
levels of representation are coordinated in semantic
cognition.

In some ways, it is tempting to see instance-based DSMs as
“cheating.” If the model stores all data, then it can compute an
accurate semantic representation whenever one is needed. But
the theoretical claim is profound in its proposal: We may not
have semantic memory in the way that theorists have typically
conceived of semantic memory. In place of the standard view,
an instance-based approach to semantics proposes that a per-
son’s interpretation of the words they are reading is construct-
ed on the fly, where meaning is an artifact of retrieving the
visual patterns from episodic memory and that our phenome-
nology of meaning is continuously constructed as the interac-
tion between stimuli, episodic memory, and the memory re-
trieval mechanism that mediates them (Kintsch and
Mangalath 2011). But the instance-based approach should al-
so put us at ease because they provide converging evidence
that performance across multiple cognitive domains (e.g.,
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categorization, recognition, semantics) might be explicable
from the same core cognitive principles (Newell 1994;
Surprenant and Neath 2013).
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